通过修正的提霍诺夫正则化从宽带背景中分离光谱线并过滤噪声

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
I. A. Larkin, A. V. Vagov, V. I. Korepanov
{"title":"通过修正的提霍诺夫正则化从宽带背景中分离光谱线并过滤噪声","authors":"I. A. Larkin, A. V. Vagov, V. I. Korepanov","doi":"10.3103/s8756699023060080","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We propose a technique for processing noisy spectral data that implements a mathematically based selection of sharp signal peaks on an unknown smooth background, for which there is no reliable theoretical model. The fundamental concept of the technique is to construct an optimizing functional that gives the most probable parameters of spectral lines. Unlike the Tikhonov regularization method, where a smooth unknown function is extracted from a noisy signal, we consider the problem of regularizing the superposition of a smooth background function with sharp peaks. The proposed approach provides an algorithm for processing experimental data that makes it possible to filter out random noise and determine both the peak parameters and the background function with good accuracy. Finding the optimal regularization parameters is based on a priori assumptions about the smoothness of the background function and the statistical properties of random noise.</p>","PeriodicalId":44919,"journal":{"name":"Optoelectronics Instrumentation and Data Processing","volume":"56 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of Spectral Lines from a Broadband Background and Noise Filtering by Modified Tikhonov Regularization\",\"authors\":\"I. A. Larkin, A. V. Vagov, V. I. Korepanov\",\"doi\":\"10.3103/s8756699023060080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We propose a technique for processing noisy spectral data that implements a mathematically based selection of sharp signal peaks on an unknown smooth background, for which there is no reliable theoretical model. The fundamental concept of the technique is to construct an optimizing functional that gives the most probable parameters of spectral lines. Unlike the Tikhonov regularization method, where a smooth unknown function is extracted from a noisy signal, we consider the problem of regularizing the superposition of a smooth background function with sharp peaks. The proposed approach provides an algorithm for processing experimental data that makes it possible to filter out random noise and determine both the peak parameters and the background function with good accuracy. Finding the optimal regularization parameters is based on a priori assumptions about the smoothness of the background function and the statistical properties of random noise.</p>\",\"PeriodicalId\":44919,\"journal\":{\"name\":\"Optoelectronics Instrumentation and Data Processing\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optoelectronics Instrumentation and Data Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s8756699023060080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronics Instrumentation and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s8756699023060080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一种处理噪声光谱数据的技术,该技术在未知光滑背景上对尖锐信号峰进行基于数学的选择,而这种背景并没有可靠的理论模型。该技术的基本概念是构建一个优化函数,给出光谱线的最可能参数。与从噪声信号中提取平滑未知函数的提霍诺夫正则化方法不同,我们考虑的是平滑背景函数与尖锐峰值叠加的正则化问题。所提出的方法提供了一种处理实验数据的算法,可以过滤随机噪声,并准确地确定峰值参数和背景函数。寻找最佳正则化参数基于对背景函数平滑性和随机噪声统计特性的先验假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Separation of Spectral Lines from a Broadband Background and Noise Filtering by Modified Tikhonov Regularization

Separation of Spectral Lines from a Broadband Background and Noise Filtering by Modified Tikhonov Regularization

Abstract

We propose a technique for processing noisy spectral data that implements a mathematically based selection of sharp signal peaks on an unknown smooth background, for which there is no reliable theoretical model. The fundamental concept of the technique is to construct an optimizing functional that gives the most probable parameters of spectral lines. Unlike the Tikhonov regularization method, where a smooth unknown function is extracted from a noisy signal, we consider the problem of regularizing the superposition of a smooth background function with sharp peaks. The proposed approach provides an algorithm for processing experimental data that makes it possible to filter out random noise and determine both the peak parameters and the background function with good accuracy. Finding the optimal regularization parameters is based on a priori assumptions about the smoothness of the background function and the statistical properties of random noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
16
期刊介绍: The scope of Optoelectronics, Instrumentation and Data Processing encompasses, but is not restricted to, the following areas: analysis and synthesis of signals and images; artificial intelligence methods; automated measurement systems; physicotechnical foundations of micro- and optoelectronics; optical information technologies; systems and components; modelling in physicotechnical research; laser physics applications; computer networks and data transmission systems. The journal publishes original papers, reviews, and short communications in order to provide the widest possible coverage of latest research and development in its chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信