韦尔变换的帕利不等式及其应用

IF 1 3区 数学 Q1 MATHEMATICS
Ritika Singhal, N. Shravan Kumar
{"title":"韦尔变换的帕利不等式及其应用","authors":"Ritika Singhal, N. Shravan Kumar","doi":"10.1515/forum-2023-0302","DOIUrl":null,"url":null,"abstract":"In this paper, we prove several versions of the classical Paley inequality for the Weyl transform. As for some applications, we prove a version of the Hörmander’s multiplier theorem to discuss <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0302_eq_0237.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0302_eq_0241.png\" /> <jats:tex-math>{L^{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of the Weyl multipliers and prove the Hardy–Littlewood inequality. We also consider the vector-valued version of the inequalities of Paley, Hausdorff–Young, and Hardy–Littlewood and their relations. Finally, we also prove Pitt’s inequality for the Weyl transform.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paley inequality for the Weyl transform and its applications\",\"authors\":\"Ritika Singhal, N. Shravan Kumar\",\"doi\":\"10.1515/forum-2023-0302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove several versions of the classical Paley inequality for the Weyl transform. As for some applications, we prove a version of the Hörmander’s multiplier theorem to discuss <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0302_eq_0237.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0302_eq_0241.png\\\" /> <jats:tex-math>{L^{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of the Weyl multipliers and prove the Hardy–Littlewood inequality. We also consider the vector-valued version of the inequalities of Paley, Hausdorff–Young, and Hardy–Littlewood and their relations. Finally, we also prove Pitt’s inequality for the Weyl transform.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0302\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0302","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了韦尔变换经典帕利不等式的几个版本。至于一些应用,我们证明了赫曼德乘数定理的一个版本,讨论了韦尔乘数的 L p {L^{p}} L q {L^{q}} 有界性,并证明了哈代-利特尔伍德不等式。 - L q {L^{q}} 的有界性,并证明了哈代-利特尔伍德不等式。我们还考虑了 Paley、Hausdorff-Young 和 Hardy-Littlewood 不等式的向量值版本及其关系。最后,我们还证明了韦尔变换的皮特不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paley inequality for the Weyl transform and its applications
In this paper, we prove several versions of the classical Paley inequality for the Weyl transform. As for some applications, we prove a version of the Hörmander’s multiplier theorem to discuss L p {L^{p}} - L q {L^{q}} boundedness of the Weyl multipliers and prove the Hardy–Littlewood inequality. We also consider the vector-valued version of the inequalities of Paley, Hausdorff–Young, and Hardy–Littlewood and their relations. Finally, we also prove Pitt’s inequality for the Weyl transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信