一维反射混合随机延迟微分方程强解的存在性

IF 1 3区 数学 Q1 MATHEMATICS
Monir Chadad, Mohamed Erraoui
{"title":"一维反射混合随机延迟微分方程强解的存在性","authors":"Monir Chadad, Mohamed Erraoui","doi":"10.1515/forum-2023-0288","DOIUrl":null,"url":null,"abstract":"Relying on the pathwise uniqueness property, we prove existence of the strong solution of a one-dimensional reflected stochastic delay equation driven by a mixture of independent Brownian and fractional Brownian motions. The difficulty is that on the one hand we cannot use the fixed-point and contraction mapping methods because of the stochastic and pathwise integrals, and on the other hand the non-continuity of the Skorokhod map with respect to the norms considered.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of strong solutions for one-dimensional reflected mixed stochastic delay differential equations\",\"authors\":\"Monir Chadad, Mohamed Erraoui\",\"doi\":\"10.1515/forum-2023-0288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relying on the pathwise uniqueness property, we prove existence of the strong solution of a one-dimensional reflected stochastic delay equation driven by a mixture of independent Brownian and fractional Brownian motions. The difficulty is that on the one hand we cannot use the fixed-point and contraction mapping methods because of the stochastic and pathwise integrals, and on the other hand the non-continuity of the Skorokhod map with respect to the norms considered.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0288\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0288","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据路径唯一性特性,我们证明了由独立布朗运动和分数布朗运动混合驱动的一维反射随机延迟方程强解的存在性。困难在于,一方面,由于随机积分和路径积分,我们无法使用定点映射和收缩映射方法;另一方面,斯科罗霍德映射相对于所考虑的规范不连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of strong solutions for one-dimensional reflected mixed stochastic delay differential equations
Relying on the pathwise uniqueness property, we prove existence of the strong solution of a one-dimensional reflected stochastic delay equation driven by a mixture of independent Brownian and fractional Brownian motions. The difficulty is that on the one hand we cannot use the fixed-point and contraction mapping methods because of the stochastic and pathwise integrals, and on the other hand the non-continuity of the Skorokhod map with respect to the norms considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信