{"title":"希尔兹布吕赫表面的 0 属对数和热带定域计数","authors":"Alessio Cela, Aitor Iribar López","doi":"10.1112/jlms.12892","DOIUrl":null,"url":null,"abstract":"<p>For a non-singular projective toric variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, the virtual logarithmic Tevelev degrees are defined as the virtual degree of the morphism from the moduli stack of logarithmic stable maps <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>M</mi>\n <mo>¯</mo>\n </mover>\n <mi>Γ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{\\mathcal {M}}_{\\mathsf {\\Gamma }}(X)$</annotation>\n </semantics></math> to the product <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>M</mi>\n <mo>¯</mo>\n </mover>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <msup>\n <mi>X</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{\\mathcal {M}}_{g,n} \\times X^n$</annotation>\n </semantics></math>. In this paper, after proving that Mikhalkin's correspondence theorem holds in genus 0 for logarithmic virtual Tevelev degrees, we use tropical methods to provide closed formulas for the case in which <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is a Hirzebruch surface. In order to do so, we explicitly list all the tropical curves contributing to the count.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12892","citationCount":"0","resultStr":"{\"title\":\"Genus 0 logarithmic and tropical fixed-domain counts for Hirzebruch surfaces\",\"authors\":\"Alessio Cela, Aitor Iribar López\",\"doi\":\"10.1112/jlms.12892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a non-singular projective toric variety <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, the virtual logarithmic Tevelev degrees are defined as the virtual degree of the morphism from the moduli stack of logarithmic stable maps <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>M</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>Γ</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\overline{\\\\mathcal {M}}_{\\\\mathsf {\\\\Gamma }}(X)$</annotation>\\n </semantics></math> to the product <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>M</mi>\\n <mo>¯</mo>\\n </mover>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msup>\\n <mi>X</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\overline{\\\\mathcal {M}}_{g,n} \\\\times X^n$</annotation>\\n </semantics></math>. In this paper, after proving that Mikhalkin's correspondence theorem holds in genus 0 for logarithmic virtual Tevelev degrees, we use tropical methods to provide closed formulas for the case in which <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is a Hirzebruch surface. In order to do so, we explicitly list all the tropical curves contributing to the count.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12892\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12892\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12892","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于非星状投影环 variety X $X$ 而言,虚拟对数特维列夫度数被定义为对数稳定映射 M ¯ Γ ( X ) $overline{\mathcal {M}}_{mathsf {\Gamma }}(X)$ 到乘积 M ¯ g , n × X n $\overline{\mathcal {M}}_{g,n} 的变形的虚拟度数。\times X^n$ 。在本文中,我们在证明米哈尔金对应定理在对数虚拟特维列夫度数的 0 属中成立之后,使用热带方法为 X $X$ 是希尔泽布鲁赫曲面的情况提供了封闭公式。为此,我们明确列出了所有有助于计数的热带曲线。
Genus 0 logarithmic and tropical fixed-domain counts for Hirzebruch surfaces
For a non-singular projective toric variety , the virtual logarithmic Tevelev degrees are defined as the virtual degree of the morphism from the moduli stack of logarithmic stable maps to the product . In this paper, after proving that Mikhalkin's correspondence theorem holds in genus 0 for logarithmic virtual Tevelev degrees, we use tropical methods to provide closed formulas for the case in which is a Hirzebruch surface. In order to do so, we explicitly list all the tropical curves contributing to the count.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.