{"title":"偶整数 p $p$ 的里兹-蒂奇马什变换的 ℓ p $\\ell ^p$ 准则","authors":"Rodrigo Bañuelos, Mateusz Kwaśnicki","doi":"10.1112/jlms.12888","DOIUrl":null,"url":null,"abstract":"<p>The long-standing conjecture that for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p \\in (1, \\infty)$</annotation>\n </semantics></math> the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ell ^p(\\mathbb {Z})$</annotation>\n </semantics></math> norm of the Riesz–Titchmarsh discrete Hilbert transform is the same as the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(\\mathbb {R})$</annotation>\n </semantics></math> norm of the classical Hilbert transform, is verified when <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$p = 2 n$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>p</mi>\n <mrow>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n <mo>=</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$\\frac{p}{p - 1} = 2 n$</annotation>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$n \\in \\mathbb {N}$</annotation>\n </semantics></math>. The proof, which is algebraic in nature, depends in a crucial way on the sharp estimate for the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ell ^p(\\mathbb {Z})$</annotation>\n </semantics></math> norm of a different variant of this operator for the full range of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. The latter result was recently proved by the authors (<i>Duke Math. J</i>. <b>168</b> (2019), no. 3, 471–504).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\n \\n \\n ℓ\\n p\\n \\n $\\\\ell ^p$\\n norm of the Riesz–Titchmarsh transform for even integer \\n \\n p\\n $p$\",\"authors\":\"Rodrigo Bañuelos, Mateusz Kwaśnicki\",\"doi\":\"10.1112/jlms.12888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The long-standing conjecture that for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p \\\\in (1, \\\\infty)$</annotation>\\n </semantics></math> the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ell ^p(\\\\mathbb {Z})$</annotation>\\n </semantics></math> norm of the Riesz–Titchmarsh discrete Hilbert transform is the same as the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(\\\\mathbb {R})$</annotation>\\n </semantics></math> norm of the classical Hilbert transform, is verified when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$p = 2 n$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mi>p</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n <mo>=</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$\\\\frac{p}{p - 1} = 2 n$</annotation>\\n </semantics></math>, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$n \\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>. The proof, which is algebraic in nature, depends in a crucial way on the sharp estimate for the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ell ^p(\\\\mathbb {Z})$</annotation>\\n </semantics></math> norm of a different variant of this operator for the full range of <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. The latter result was recently proved by the authors (<i>Duke Math. J</i>. <b>168</b> (2019), no. 3, 471–504).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12888\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12888","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
长期以来的猜想是,对于 p∈ ( 1 , ∞ ) $p \in (1, \infty)$ Riesz-Titchmarsh 离散希尔伯特变换的 ℓ p ( Z ) $ell ^p(\mathbb{Z})$规范与经典希尔伯特变换的 L p ( R ) $L^p(\mathbb {R})$ 规范相同,当 p = 2 n $p = 2 n$ 或 p p - 1 = 2 n $frac{p}{p - 1} = 2 n$ 时,对于 n∈ N $n \in \mathbb {N}$,这一猜想得到了验证。这个证明在本质上是代数的,它在一个关键的方面依赖于这个算子的一个不同变体对于整个 p $p$ 范围的 ℓ p ( Z ) $\ell ^p(\mathbb{Z})$规范的尖锐估计。作者最近证明了后一个结果(Duke Math.J. 168 (2019), no.3, 471-504).
The
ℓ
p
$\ell ^p$
norm of the Riesz–Titchmarsh transform for even integer
p
$p$
The long-standing conjecture that for the norm of the Riesz–Titchmarsh discrete Hilbert transform is the same as the norm of the classical Hilbert transform, is verified when or , for . The proof, which is algebraic in nature, depends in a crucial way on the sharp estimate for the norm of a different variant of this operator for the full range of . The latter result was recently proved by the authors (Duke Math. J. 168 (2019), no. 3, 471–504).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.