{"title":"给定度数的密集随机图上的循环","authors":"Lyuben Lichev , Dieter Mitsche , Guillem Perarnau","doi":"10.1016/j.jctb.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the order of the largest connected component of a random graph having two sources of randomness: first, the graph is chosen randomly from all graphs with a given degree sequence, and then bond percolation is applied. Far from being able to classify all such degree sequences, we exhibit several new threshold phenomena for the order of the largest component in terms of both sources of randomness. We also provide an example of a degree sequence for which the order of the largest component undergoes an unbounded number of jumps in terms of the percolation parameter, giving rise to a behavior that cannot be observed without percolation.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 250-282"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Percolation on dense random graphs with given degrees\",\"authors\":\"Lyuben Lichev , Dieter Mitsche , Guillem Perarnau\",\"doi\":\"10.1016/j.jctb.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the order of the largest connected component of a random graph having two sources of randomness: first, the graph is chosen randomly from all graphs with a given degree sequence, and then bond percolation is applied. Far from being able to classify all such degree sequences, we exhibit several new threshold phenomena for the order of the largest component in terms of both sources of randomness. We also provide an example of a degree sequence for which the order of the largest component undergoes an unbounded number of jumps in terms of the percolation parameter, giving rise to a behavior that cannot be observed without percolation.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 250-282\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000200\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000200","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Percolation on dense random graphs with given degrees
In this paper, we study the order of the largest connected component of a random graph having two sources of randomness: first, the graph is chosen randomly from all graphs with a given degree sequence, and then bond percolation is applied. Far from being able to classify all such degree sequences, we exhibit several new threshold phenomena for the order of the largest component in terms of both sources of randomness. We also provide an example of a degree sequence for which the order of the largest component undergoes an unbounded number of jumps in terms of the percolation parameter, giving rise to a behavior that cannot be observed without percolation.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.