具有有界诱导循环堆积数的稀疏图具有对数树宽

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marthe Bonamy , Édouard Bonnet , Hugues Déprés , Louis Esperet , Colin Geniet , Claire Hilaire , Stéphan Thomassé , Alexandra Wesolek
{"title":"具有有界诱导循环堆积数的稀疏图具有对数树宽","authors":"Marthe Bonamy ,&nbsp;Édouard Bonnet ,&nbsp;Hugues Déprés ,&nbsp;Louis Esperet ,&nbsp;Colin Geniet ,&nbsp;Claire Hilaire ,&nbsp;Stéphan Thomassé ,&nbsp;Alexandra Wesolek","doi":"10.1016/j.jctb.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free if it does not contain <em>k</em> pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs without <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> as a subgraph and whose treewidth is (at least) logarithmic.</p><p>Using our result, we show that <span>Maximum Independent Set</span> and <span>3-Coloring</span> in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as <span>Maximum Independent Set</span>, <span>Minimum Vertex Cover</span>, <span>Minimum Dominating Set</span>, <span>Minimum Coloring</span>) can be solved in polynomial time in sparse <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs, and that deciding the <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-freeness of sparse graphs is polynomial time solvable.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse graphs with bounded induced cycle packing number have logarithmic treewidth\",\"authors\":\"Marthe Bonamy ,&nbsp;Édouard Bonnet ,&nbsp;Hugues Déprés ,&nbsp;Louis Esperet ,&nbsp;Colin Geniet ,&nbsp;Claire Hilaire ,&nbsp;Stéphan Thomassé ,&nbsp;Alexandra Wesolek\",\"doi\":\"10.1016/j.jctb.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free if it does not contain <em>k</em> pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs without <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> as a subgraph and whose treewidth is (at least) logarithmic.</p><p>Using our result, we show that <span>Maximum Independent Set</span> and <span>3-Coloring</span> in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as <span>Maximum Independent Set</span>, <span>Minimum Vertex Cover</span>, <span>Minimum Dominating Set</span>, <span>Minimum Coloring</span>) can be solved in polynomial time in sparse <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs, and that deciding the <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-freeness of sparse graphs is polynomial time solvable.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000212\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000212","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果一个图不包含 k 个成对顶点不相邻的循环,那么这个图就是无 Ok 图。我们证明,"稀疏"(此处指不含大型完整双方形图作为子图)无 Ok 图的树宽(偶数,反馈顶点集数)最多为顶点数的对数。利用我们的结果,我们证明了 Ok-free 图中的最大独立集和 3-Coloring 可以在准对数时间内求解。其他结果还包括:在稀疏无 Ok 图中,大多数核心 NP-完全问题(如最大独立集、最小顶点覆盖、最小支配集、最小着色)都可以在多项式时间内求解,而且决定稀疏图的 Ok-无性也可以在多项式时间内求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

A graph is Ok-free if it does not contain k pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) Ok-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of O2-free graphs without K2,3 as a subgraph and whose treewidth is (at least) logarithmic.

Using our result, we show that Maximum Independent Set and 3-Coloring in Ok-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse Ok-free graphs, and that deciding the Ok-freeness of sparse graphs is polynomial time solvable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信