Marthe Bonamy , Édouard Bonnet , Hugues Déprés , Louis Esperet , Colin Geniet , Claire Hilaire , Stéphan Thomassé , Alexandra Wesolek
{"title":"具有有界诱导循环堆积数的稀疏图具有对数树宽","authors":"Marthe Bonamy , Édouard Bonnet , Hugues Déprés , Louis Esperet , Colin Geniet , Claire Hilaire , Stéphan Thomassé , Alexandra Wesolek","doi":"10.1016/j.jctb.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free if it does not contain <em>k</em> pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs without <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> as a subgraph and whose treewidth is (at least) logarithmic.</p><p>Using our result, we show that <span>Maximum Independent Set</span> and <span>3-Coloring</span> in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as <span>Maximum Independent Set</span>, <span>Minimum Vertex Cover</span>, <span>Minimum Dominating Set</span>, <span>Minimum Coloring</span>) can be solved in polynomial time in sparse <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs, and that deciding the <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-freeness of sparse graphs is polynomial time solvable.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 215-249"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse graphs with bounded induced cycle packing number have logarithmic treewidth\",\"authors\":\"Marthe Bonamy , Édouard Bonnet , Hugues Déprés , Louis Esperet , Colin Geniet , Claire Hilaire , Stéphan Thomassé , Alexandra Wesolek\",\"doi\":\"10.1016/j.jctb.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free if it does not contain <em>k</em> pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs without <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> as a subgraph and whose treewidth is (at least) logarithmic.</p><p>Using our result, we show that <span>Maximum Independent Set</span> and <span>3-Coloring</span> in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as <span>Maximum Independent Set</span>, <span>Minimum Vertex Cover</span>, <span>Minimum Dominating Set</span>, <span>Minimum Coloring</span>) can be solved in polynomial time in sparse <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs, and that deciding the <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-freeness of sparse graphs is polynomial time solvable.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 215-249\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000212\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000212","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果一个图不包含 k 个成对顶点不相邻的循环,那么这个图就是无 Ok 图。我们证明,"稀疏"(此处指不含大型完整双方形图作为子图)无 Ok 图的树宽(偶数,反馈顶点集数)最多为顶点数的对数。利用我们的结果,我们证明了 Ok-free 图中的最大独立集和 3-Coloring 可以在准对数时间内求解。其他结果还包括:在稀疏无 Ok 图中,大多数核心 NP-完全问题(如最大独立集、最小顶点覆盖、最小支配集、最小着色)都可以在多项式时间内求解,而且决定稀疏图的 Ok-无性也可以在多项式时间内求解。
Sparse graphs with bounded induced cycle packing number have logarithmic treewidth
A graph is -free if it does not contain k pairwise vertex-disjoint and non-adjacent cycles. We prove that “sparse” (here, not containing large complete bipartite graphs as subgraphs) -free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of -free graphs without as a subgraph and whose treewidth is (at least) logarithmic.
Using our result, we show that Maximum Independent Set and 3-Coloring in -free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse -free graphs, and that deciding the -freeness of sparse graphs is polynomial time solvable.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.