带有正非 Lipschitz 连续半线性源项的热方程的自相似解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Farina, R. Gianni
{"title":"带有正非 Lipschitz 连续半线性源项的热方程的自相似解","authors":"A. Farina,&nbsp;R. Gianni","doi":"10.1016/j.nonrwa.2024.104121","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term\",\"authors\":\"A. Farina,&nbsp;R. Gianni\",\"doi\":\"10.1016/j.nonrwa.2024.104121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000610\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了抛物方程 ut=Δu+umHu 的自相似解的存在性(0≤m<1,H 为 Heaviside 图),该方程与初始基准 ux,0=-cx211-m 相耦合,c>0。我们分析了两种情况:在 Rn 中,n>1,m=0 时的问题和在 R 中,0≤m<1 时的问题。在第一种情况下,我们扩展了 Gianni 和 Hulshof(1992 年)的结果,并证明只存在两个符号变化的自相似解,条件是 0<c<ccr,ccr 是通过求解一个取决于 n 的特定代数方程得到的。在第二种情况下,我们证明了问题 ut=uxx+umHu, ux,0=-cx211-m 至少存在两个自相似解,它们改变符号并在 u>0 处演化。这些解引起了极大的兴趣。事实上,它们一方面证明了该问题不具有唯一性,另一方面证明了对于一个原本为负值的初始基准,ux,0=0 的单点可以产生一个 ux,t 为正值的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term

We investigate the existence of self-similar solutions for the parabolic equation ut=Δu+umHu, with 0m<1 and H the Heaviside graph, coupled with the initial datum ux,0=cx211m, with c>0. We analyze two cases: the problem in Rn , n>1, with m=0 and the problem in R when 0m<1. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided 0<c<ccr, with ccr obtained solving a specific algebraic equation depending on n. In the second case we prove that there exist at least two self-similar solutions of problem ut=uxx+umHu, ux,0=cx211m, changing sign and evolving region where u>0. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where ux,0=0, for an initial datum which is otherwise negative, can generate a region where ux,t is positive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信