{"title":"带有正非 Lipschitz 连续半线性源项的热方程的自相似解","authors":"A. Farina, R. Gianni","doi":"10.1016/j.nonrwa.2024.104121","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term\",\"authors\":\"A. Farina, R. Gianni\",\"doi\":\"10.1016/j.nonrwa.2024.104121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000610\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term
We investigate the existence of self-similar solutions for the parabolic equation , with and the Heaviside graph, coupled with the initial datum , with . We analyze two cases: the problem in , , with and the problem in when . In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided , with obtained solving a specific algebraic equation depending on . In the second case we prove that there exist at least two self-similar solutions of problem , , changing sign and evolving region where . These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where , for an initial datum which is otherwise negative, can generate a region where is positive.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.