{"title":"带有正非 Lipschitz 连续半线性源项的热方程的自相似解","authors":"A. Farina, R. Gianni","doi":"10.1016/j.nonrwa.2024.104121","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104121"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term\",\"authors\":\"A. Farina, R. Gianni\",\"doi\":\"10.1016/j.nonrwa.2024.104121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the existence of self-similar solutions for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mi>H</mi></math></span> the Heaviside graph, coupled with the initial datum <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span>. We analyze two cases: the problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> , <span><math><mrow><mi>n</mi><mo>></mo><mn>1</mn></mrow></math></span>, with <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the problem in <span><math><mi>R</mi></math></span> when <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>. In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided <span><math><mrow><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, with <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></math></span> obtained solving a specific algebraic equation depending on <span><math><mi>n</mi></math></span>. In the second case we prove that there exist at least two self-similar solutions of problem <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>H</mi><mfenced><mrow><mi>u</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mo>−</mo><mi>c</mi><msup><mrow><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>m</mi></mrow></mfrac></mrow></msup></mrow></math></span>, changing sign and evolving region where <span><math><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></math></span>. These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, for an initial datum which is otherwise negative, can generate a region where <span><math><mrow><mi>u</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow></mfenced></mrow></math></span> is positive.</p></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"79 \",\"pages\":\"Article 104121\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000610\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000610","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Self-similar solutions for the heat equation with a positive non-Lipschitz continuous, semilinear source term
We investigate the existence of self-similar solutions for the parabolic equation , with and the Heaviside graph, coupled with the initial datum , with . We analyze two cases: the problem in , , with and the problem in when . In the first case we extend the result of Gianni and Hulshof (1992) and show that there exist only two self-similar solutions changing sign, provided , with obtained solving a specific algebraic equation depending on . In the second case we prove that there exist at least two self-similar solutions of problem , , changing sign and evolving region where . These solutions are of great interest. Indeed, on one hand they prove that the problem does not admit uniqueness and on the other they prove that a single point where , for an initial datum which is otherwise negative, can generate a region where is positive.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.