F22m 的新类置换三项式

IF 1.2 3区 数学 Q1 MATHEMATICS
Akshay Ankush Yadav , Indivar Gupta , Harshdeep Singh , Arvind Yadav
{"title":"F22m 的新类置换三项式","authors":"Akshay Ankush Yadav ,&nbsp;Indivar Gupta ,&nbsp;Harshdeep Singh ,&nbsp;Arvind Yadav","doi":"10.1016/j.ffa.2024.102414","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there have been a lot of research towards finding conditions under which the trinomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>β</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></math></span> permutes <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> with <span><math><mi>α</mi><mo>&gt;</mo><mi>β</mi></math></span> and <em>r</em> being positive integers. The authors of <span>[6]</span>, <span>[10]</span>, <span>[24]</span> have determined these conditions when <span><math><mi>α</mi><mo>≤</mo><mn>5</mn></math></span> for certain values of <em>β</em> and <em>r</em>. In this paper, we work for <span><math><mi>α</mi><mo>=</mo><mn>6</mn></math></span> and determine four new classes of such permutation trinomials. Our contribution encompasses the investigation of these unexplored classes. Additionally, we analyze their quasi-multiplicative equivalence with already known permutation trinomials for <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Through our research, we demonstrate that two of these determined classes are new, and for others, we explicitly compute the exponent for which they become equivalent.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102414"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New classes of permutation trinomials of F22m\",\"authors\":\"Akshay Ankush Yadav ,&nbsp;Indivar Gupta ,&nbsp;Harshdeep Singh ,&nbsp;Arvind Yadav\",\"doi\":\"10.1016/j.ffa.2024.102414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, there have been a lot of research towards finding conditions under which the trinomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>β</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></math></span> permutes <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span> with <span><math><mi>α</mi><mo>&gt;</mo><mi>β</mi></math></span> and <em>r</em> being positive integers. The authors of <span>[6]</span>, <span>[10]</span>, <span>[24]</span> have determined these conditions when <span><math><mi>α</mi><mo>≤</mo><mn>5</mn></math></span> for certain values of <em>β</em> and <em>r</em>. In this paper, we work for <span><math><mi>α</mi><mo>=</mo><mn>6</mn></math></span> and determine four new classes of such permutation trinomials. Our contribution encompasses the investigation of these unexplored classes. Additionally, we analyze their quasi-multiplicative equivalence with already known permutation trinomials for <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Through our research, we demonstrate that two of these determined classes are new, and for others, we explicitly compute the exponent for which they become equivalent.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"96 \",\"pages\":\"Article 102414\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000534\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000534","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们一直在寻找三项式 xr(xα(q-1)+xβ(q-1)+1) 包络 F22m 且 α>β 和 r 为正整数的条件。在本文中,我们研究了 α=6 的情况,并确定了四类新的此类置换三项式。我们的贡献包括对这些未探索类别的研究。此外,我们还分析了它们与已知的 m≥1 的置换三项式的准乘法等价性。通过研究,我们证明了这些确定的类别中有两个是新的,对于其他类别,我们明确计算了它们等价的指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New classes of permutation trinomials of F22m

In recent years, there have been a lot of research towards finding conditions under which the trinomial xr(xα(q1)+xβ(q1)+1) permutes F22m with α>β and r being positive integers. The authors of [6], [10], [24] have determined these conditions when α5 for certain values of β and r. In this paper, we work for α=6 and determine four new classes of such permutation trinomials. Our contribution encompasses the investigation of these unexplored classes. Additionally, we analyze their quasi-multiplicative equivalence with already known permutation trinomials for m1. Through our research, we demonstrate that two of these determined classes are new, and for others, we explicitly compute the exponent for which they become equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信