OneMax 并非改善体能的最简单功能。

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marc Kaufmann, Maxime Larcher, Johannes Lengler, Xun Zou
{"title":"OneMax 并非改善体能的最简单功能。","authors":"Marc Kaufmann, Maxime Larcher, Johannes Lengler, Xun Zou","doi":"10.1162/evco_a_00348","DOIUrl":null,"url":null,"abstract":"<p><p>We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OneMax is not the Easiest Function for Fitness Improvements.\",\"authors\":\"Marc Kaufmann, Maxime Larcher, Johannes Lengler, Xun Zou\",\"doi\":\"10.1162/evco_a_00348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00348\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00348","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了控制 (1,λ)- EA 种群规模的 (1:s+1) 成功规则。Hevia Fajardo 和 Sudholt 的研究表明,如果适配景观过于简单,这种参数控制机制在 s 较大时可能会出现问题。他们推测,这个问题在 ONEMAX 基准中最为严重,因为从某种既定的意义上讲,ONEMAX 是已知的最简单的适配景观。在本文中,我们推翻了这一猜想。我们证明,存在 s 和 ɛ 这样的情况:采用 (1:s+1) 规则的自调整 (1,λ)-EA 在从ɛn 个零位开始时能高效优化 ONEMAX,但在动态 BINVAL 上却不能在多项式时间内找到最优。因此,我们证明,在有些地形中,控制 (1,λ)-EA 种群规模的 (1:s+1)- 规则的问题比 ONEMAX 更严重。关键之处在于,虽然ONEMAX 是最容易减小与最优值距离的函数,但它并不是最容易找到改善适应性步骤的适应性景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OneMax is not the Easiest Function for Fitness Improvements.

We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信