肌腱修复中的抗粘连生物材料:应用现状与未来前景。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Peilin Zhang, Jiacheng Hu, Xiaonan Liu, Yanhao Li, Sa Pang, Shen Liu
{"title":"肌腱修复中的抗粘连生物材料:应用现状与未来前景。","authors":"Peilin Zhang, Jiacheng Hu, Xiaonan Liu, Yanhao Li, Sa Pang, Shen Liu","doi":"10.1089/ten.TEB.2023.0313","DOIUrl":null,"url":null,"abstract":"<p><p>The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiadhesion Biomaterials in Tendon Repair: Application Status and Future Prospect.\",\"authors\":\"Peilin Zhang, Jiacheng Hu, Xiaonan Liu, Yanhao Li, Sa Pang, Shen Liu\",\"doi\":\"10.1089/ten.TEB.2023.0313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2023.0313\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2023.0313","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

肌腱损伤后的愈合过程往往伴随着腱周粘连的形成,导致肢体功能障碍,对个人以及社会和经济的发展造成不利影响。随着材料科学的不断发展,以及人们对肌腱愈合和腱周粘连形成机理认识的加深,用于制造腱周粘连屏障膜的材料层出不穷。本文在分析粘连形成机理的基础上,首先回顾了常用的天然材料和合成材料及其相应的制造策略,以期为未来抗腱周粘连屏障膜的优化和开发提供有价值的见解。本文还讨论了抗粘连材料与细胞之间的相互作用,以改善腱周粘连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antiadhesion Biomaterials in Tendon Repair: Application Status and Future Prospect.

The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信