{"title":"加载羟基磷灰石的湿法纺丝聚(3-羟基丁酸-co-3-羟基戊酸)基支架的加成制造","authors":"Gianni Pecorini, Simona Braccini, Stefano Simoni, Andrea Corti, Gianluca Parrini, Dario Puppi","doi":"10.1002/mabi.202300538","DOIUrl":null,"url":null,"abstract":"<p>Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-<i>co</i>-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Wet-Spun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Scaffolds Loaded with Hydroxyapatite\",\"authors\":\"Gianni Pecorini, Simona Braccini, Stefano Simoni, Andrea Corti, Gianluca Parrini, Dario Puppi\",\"doi\":\"10.1002/mabi.202300538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-<i>co</i>-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202300538\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202300538","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Additive Manufacturing of Wet-Spun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Scaffolds Loaded with Hydroxyapatite
Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-co-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.