Rushabh P Lohade, Chad Brewer, Christine M Rapp, Karen M Henkels, Wenfeng Zhang, Anita Thyagarajan, Shikshita Singh, Pranali Manjrekar, Taskin Sabit, Ravi P Sahu, Jeffrey B Travers
{"title":"有证据表明,携带血小板活化因子的角质细胞微囊颗粒介导了与中毒性热烧伤相关的广泛的多器官损伤。","authors":"Rushabh P Lohade, Chad Brewer, Christine M Rapp, Karen M Henkels, Wenfeng Zhang, Anita Thyagarajan, Shikshita Singh, Pranali Manjrekar, Taskin Sabit, Ravi P Sahu, Jeffrey B Travers","doi":"10.1093/jleuko/qiae078","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal burn injuries can result in significant morbidity and mortality. The combination of ethanol intoxication with thermal burn injury results in increased morbidity through an exaggerated inflammatory response involving many organs. Recent studies have linked involvement of the lipid mediator platelet-activating factor (PAF) in the pathology associated with intoxicated thermal burn injury (ITBI). The present studies tested the roles of PAF and the elevated levels of subcellular microvesicle particles (MVP) generated in response to ITBI in the subsequent multiorgan toxicity. First, thermal burn injury of HaCaT keratinocytes preincubated with ethanol resulted in augmented MVP release, which was blocked by inhibiting the PAF-generating enzyme cytosolic phospholipase A2 and the PAF receptor (PAFR). Second, ITBI of mice resulted in increased proinflammatory cytokine production and neutrophilic inflammation in multiple organs, which were not present in mice deficient in PAFRs or the MVP-generating enzyme acid sphingomyelinase (aSMase). Moreover, the increased bacterial translocation from the gut to mesenteric lymph nodes previously reported in murine ITBI was also dependent on PAFR and aSMase. MVP released from ITBI-treated keratinocytes contained high levels of PAFR agonistic activity. Finally, use of topical aSMase inhibitor imipramine following ITBI attenuated the widespread organ inflammatory response of ITBI, suggesting a potential therapeutic for this condition. These studies provide evidence for PAF-enriched MVP generated in skin, which then act on the gut PAFR, resulting in bacterial translocation as the mechanism for the multiorgan dysfunction associated with ITBI. Inasmuch as aSMase inhibitors are widely available, these studies could result in effective treatments for ITBI.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":"766-778"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence that keratinocyte microvesicle particles carrying platelet-activating factor mediate the widespread multiorgan damage associated with intoxicated thermal burn injury.\",\"authors\":\"Rushabh P Lohade, Chad Brewer, Christine M Rapp, Karen M Henkels, Wenfeng Zhang, Anita Thyagarajan, Shikshita Singh, Pranali Manjrekar, Taskin Sabit, Ravi P Sahu, Jeffrey B Travers\",\"doi\":\"10.1093/jleuko/qiae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermal burn injuries can result in significant morbidity and mortality. The combination of ethanol intoxication with thermal burn injury results in increased morbidity through an exaggerated inflammatory response involving many organs. Recent studies have linked involvement of the lipid mediator platelet-activating factor (PAF) in the pathology associated with intoxicated thermal burn injury (ITBI). The present studies tested the roles of PAF and the elevated levels of subcellular microvesicle particles (MVP) generated in response to ITBI in the subsequent multiorgan toxicity. First, thermal burn injury of HaCaT keratinocytes preincubated with ethanol resulted in augmented MVP release, which was blocked by inhibiting the PAF-generating enzyme cytosolic phospholipase A2 and the PAF receptor (PAFR). Second, ITBI of mice resulted in increased proinflammatory cytokine production and neutrophilic inflammation in multiple organs, which were not present in mice deficient in PAFRs or the MVP-generating enzyme acid sphingomyelinase (aSMase). Moreover, the increased bacterial translocation from the gut to mesenteric lymph nodes previously reported in murine ITBI was also dependent on PAFR and aSMase. MVP released from ITBI-treated keratinocytes contained high levels of PAFR agonistic activity. Finally, use of topical aSMase inhibitor imipramine following ITBI attenuated the widespread organ inflammatory response of ITBI, suggesting a potential therapeutic for this condition. These studies provide evidence for PAF-enriched MVP generated in skin, which then act on the gut PAFR, resulting in bacterial translocation as the mechanism for the multiorgan dysfunction associated with ITBI. Inasmuch as aSMase inhibitors are widely available, these studies could result in effective treatments for ITBI.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"766-778\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiae078\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Evidence that keratinocyte microvesicle particles carrying platelet-activating factor mediate the widespread multiorgan damage associated with intoxicated thermal burn injury.
Thermal burn injuries can result in significant morbidity and mortality. The combination of ethanol intoxication with thermal burn injury results in increased morbidity through an exaggerated inflammatory response involving many organs. Recent studies have linked involvement of the lipid mediator platelet-activating factor (PAF) in the pathology associated with intoxicated thermal burn injury (ITBI). The present studies tested the roles of PAF and the elevated levels of subcellular microvesicle particles (MVP) generated in response to ITBI in the subsequent multiorgan toxicity. First, thermal burn injury of HaCaT keratinocytes preincubated with ethanol resulted in augmented MVP release, which was blocked by inhibiting the PAF-generating enzyme cytosolic phospholipase A2 and the PAF receptor (PAFR). Second, ITBI of mice resulted in increased proinflammatory cytokine production and neutrophilic inflammation in multiple organs, which were not present in mice deficient in PAFRs or the MVP-generating enzyme acid sphingomyelinase (aSMase). Moreover, the increased bacterial translocation from the gut to mesenteric lymph nodes previously reported in murine ITBI was also dependent on PAFR and aSMase. MVP released from ITBI-treated keratinocytes contained high levels of PAFR agonistic activity. Finally, use of topical aSMase inhibitor imipramine following ITBI attenuated the widespread organ inflammatory response of ITBI, suggesting a potential therapeutic for this condition. These studies provide evidence for PAF-enriched MVP generated in skin, which then act on the gut PAFR, resulting in bacterial translocation as the mechanism for the multiorgan dysfunction associated with ITBI. Inasmuch as aSMase inhibitors are widely available, these studies could result in effective treatments for ITBI.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.