Perla Pizzi Argentato, João Victor da Silva Guerra, Liania Alves Luzia, Ester Silveira Ramos, Mariana Maschietto, Patrícia Helen de Carvalho Rondó
{"title":"通过对不同甲基化区域的整合网络分析,研究妊娠体重增加对母体代谢和胎儿-新生儿生长的影响。","authors":"Perla Pizzi Argentato, João Victor da Silva Guerra, Liania Alves Luzia, Ester Silveira Ramos, Mariana Maschietto, Patrícia Helen de Carvalho Rondó","doi":"10.1590/1678-4685-GMB-2023-0203","DOIUrl":null,"url":null,"abstract":"<p><p>Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from \"The Araraquara Cohort Study\" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative network analysis of differentially methylated regions to study the impact of gestational weight gain on maternal metabolism and fetal-neonatal growth.\",\"authors\":\"Perla Pizzi Argentato, João Victor da Silva Guerra, Liania Alves Luzia, Ester Silveira Ramos, Mariana Maschietto, Patrícia Helen de Carvalho Rondó\",\"doi\":\"10.1590/1678-4685-GMB-2023-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from \\\"The Araraquara Cohort Study\\\" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4685-GMB-2023-0203\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrative network analysis of differentially methylated regions to study the impact of gestational weight gain on maternal metabolism and fetal-neonatal growth.
Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from "The Araraquara Cohort Study" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.