Karine Fernandes Camacho, Layssa de Melo Carlos, Suzan Prado Fernandes Bernal, Valéria M de Oliveira, Jorge Luiz Maria Ruiz, Júlia Ronzella Ottoni, Rosemary Vieira, Arthur Neto, Luiz Henrique Rosa, Michel Rodrigo Zambrano Passarini
{"title":"南极海洋沉积物是丝状真菌产生的具有药用价值的抗菌和抗肿瘤化合物的来源。","authors":"Karine Fernandes Camacho, Layssa de Melo Carlos, Suzan Prado Fernandes Bernal, Valéria M de Oliveira, Jorge Luiz Maria Ruiz, Júlia Ronzella Ottoni, Rosemary Vieira, Arthur Neto, Luiz Henrique Rosa, Michel Rodrigo Zambrano Passarini","doi":"10.1007/s00792-024-01339-1","DOIUrl":null,"url":null,"abstract":"<p><p>Antarctica harbors a microbial diversity still poorly explored and of inestimable biotechnological value. Cold-adapted microorganisms can produce a diverse range of metabolites stable at low temperatures, making these compounds industrially interesting for biotechnological use. The present work investigated the biotechnological potential for antimicrobial and antitumor activity of filamentous fungi and bacteria isolated from marine sediment samples collected at Deception Island, Antarctica. A total of 89 microbial isolates were recovered from marine sediments and submitted to an initial screening for L-glutaminase with antitumoral activity and for antimicrobial metabolites. The isolates Pseudogymnoascus sp. FDG01, Pseudogymnoascus sp. FDG02, and Penicillium sp. FAD33 showed potential antiproliferative action against human pancreatic carcinoma cells while showing no toxic effect on non-tumor cells. The microbial extracts from unidentified three bacteria and four filamentous fungi showed antibacterial activity against at least one tested pathogenic bacterial strain. The isolate FDG01 inhibited four bacterial species, while the isolate FDG01 was active against Micrococcus luteus in the minimal inhibitory concentration of 0.015625 μg mL <sup>-1</sup>. The results pave the way for further optimization of enzyme production and characterization of enzymes and metabolites found and reaffirm Antarctic marine environments as a wealthy source of compounds potentially applicable in the healthcare and pharmaceutical industry.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"28 2","pages":"21"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antarctic marine sediment as a source of filamentous fungi-derived antimicrobial and antitumor compounds of pharmaceutical interest.\",\"authors\":\"Karine Fernandes Camacho, Layssa de Melo Carlos, Suzan Prado Fernandes Bernal, Valéria M de Oliveira, Jorge Luiz Maria Ruiz, Júlia Ronzella Ottoni, Rosemary Vieira, Arthur Neto, Luiz Henrique Rosa, Michel Rodrigo Zambrano Passarini\",\"doi\":\"10.1007/s00792-024-01339-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antarctica harbors a microbial diversity still poorly explored and of inestimable biotechnological value. Cold-adapted microorganisms can produce a diverse range of metabolites stable at low temperatures, making these compounds industrially interesting for biotechnological use. The present work investigated the biotechnological potential for antimicrobial and antitumor activity of filamentous fungi and bacteria isolated from marine sediment samples collected at Deception Island, Antarctica. A total of 89 microbial isolates were recovered from marine sediments and submitted to an initial screening for L-glutaminase with antitumoral activity and for antimicrobial metabolites. The isolates Pseudogymnoascus sp. FDG01, Pseudogymnoascus sp. FDG02, and Penicillium sp. FAD33 showed potential antiproliferative action against human pancreatic carcinoma cells while showing no toxic effect on non-tumor cells. The microbial extracts from unidentified three bacteria and four filamentous fungi showed antibacterial activity against at least one tested pathogenic bacterial strain. The isolate FDG01 inhibited four bacterial species, while the isolate FDG01 was active against Micrococcus luteus in the minimal inhibitory concentration of 0.015625 μg mL <sup>-1</sup>. The results pave the way for further optimization of enzyme production and characterization of enzymes and metabolites found and reaffirm Antarctic marine environments as a wealthy source of compounds potentially applicable in the healthcare and pharmaceutical industry.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"28 2\",\"pages\":\"21\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-024-01339-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01339-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antarctic marine sediment as a source of filamentous fungi-derived antimicrobial and antitumor compounds of pharmaceutical interest.
Antarctica harbors a microbial diversity still poorly explored and of inestimable biotechnological value. Cold-adapted microorganisms can produce a diverse range of metabolites stable at low temperatures, making these compounds industrially interesting for biotechnological use. The present work investigated the biotechnological potential for antimicrobial and antitumor activity of filamentous fungi and bacteria isolated from marine sediment samples collected at Deception Island, Antarctica. A total of 89 microbial isolates were recovered from marine sediments and submitted to an initial screening for L-glutaminase with antitumoral activity and for antimicrobial metabolites. The isolates Pseudogymnoascus sp. FDG01, Pseudogymnoascus sp. FDG02, and Penicillium sp. FAD33 showed potential antiproliferative action against human pancreatic carcinoma cells while showing no toxic effect on non-tumor cells. The microbial extracts from unidentified three bacteria and four filamentous fungi showed antibacterial activity against at least one tested pathogenic bacterial strain. The isolate FDG01 inhibited four bacterial species, while the isolate FDG01 was active against Micrococcus luteus in the minimal inhibitory concentration of 0.015625 μg mL -1. The results pave the way for further optimization of enzyme production and characterization of enzymes and metabolites found and reaffirm Antarctic marine environments as a wealthy source of compounds potentially applicable in the healthcare and pharmaceutical industry.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.