用于检测细胞表面 GLUT4-myc 的流式细胞术方案。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Emilia Zanni-Ruiz, Luis Segundo Mayorga, Martin Alejandro Pavarotti
{"title":"用于检测细胞表面 GLUT4-myc 的流式细胞术方案。","authors":"Emilia Zanni-Ruiz, Luis Segundo Mayorga, Martin Alejandro Pavarotti","doi":"10.1042/BSR20231987","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flow cytometry protocol for GLUT4-myc detection on cell surfaces.\",\"authors\":\"Emilia Zanni-Ruiz, Luis Segundo Mayorga, Martin Alejandro Pavarotti\",\"doi\":\"10.1042/BSR20231987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20231987\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20231987","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素和肌肉收缩会触发 GLUT4 转位至质膜,从而增加肌肉细胞对葡萄糖的吸收。胰岛素抵抗和 2 型糖尿病是 GLUT4 转位功能受损的结果。量化 GLUT4 转位对于理解葡萄糖代谢所涉及的生理和病理生理过程的复杂性至关重要。测量 GLUT4 转位最常用的方法是 ELISA 检测法和免疫荧光检测法。虽然有报告称流式细胞术可用于量化 GLUT4 转位,但这种技术并不常用。目前,我们对 GLUT4 调控的理解大多基于使用大鼠成肌细胞系(L6 细胞)进行的实验,该细胞系表达的 GLUT4 在外侧环上带有霉菌表位。在本研究中,我们利用 L6-GLUT4myc 细胞系开发了一种基于流式细胞仪的方法来检测 GLUT4 转位。流式细胞术具有免疫荧光和酶联免疫吸附测定法的优点。它既能像免疫荧光法一样轻松识别样本中的独立细胞群,又能像酶联免疫吸附法一样根据对多个单个细胞的群体水平分析提供结果。我们的结果表明,与基础条件相比,胰岛素刺激下的细胞数量增加了 0.6 倍。最后,流式细胞术在不同的实验中都能得出一致的结果,并在测试条件下表现出灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow cytometry protocol for GLUT4-myc detection on cell surfaces.

Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信