基于蛋白质核磁共振结构集合和机器学习的阶次参数预测。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qianqian Wang, Zhiwei Miao, Xiongjie Xiao, Xu Zhang, Daiwen Yang, Bin Jiang, Maili Liu
{"title":"基于蛋白质核磁共振结构集合和机器学习的阶次参数预测。","authors":"Qianqian Wang,&nbsp;Zhiwei Miao,&nbsp;Xiongjie Xiao,&nbsp;Xu Zhang,&nbsp;Daiwen Yang,&nbsp;Bin Jiang,&nbsp;Maili Liu","doi":"10.1007/s10858-024-00435-w","DOIUrl":null,"url":null,"abstract":"<div><p>The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter <i>S</i><sup>2</sup> to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone <sup>1</sup>H-<sup>15</sup>N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone <sup>1</sup>H-<sup>15</sup>N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of order parameters based on protein NMR structure ensemble and machine learning\",\"authors\":\"Qianqian Wang,&nbsp;Zhiwei Miao,&nbsp;Xiongjie Xiao,&nbsp;Xu Zhang,&nbsp;Daiwen Yang,&nbsp;Bin Jiang,&nbsp;Maili Liu\",\"doi\":\"10.1007/s10858-024-00435-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter <i>S</i><sup>2</sup> to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone <sup>1</sup>H-<sup>15</sup>N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone <sup>1</sup>H-<sup>15</sup>N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-024-00435-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00435-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质在皮秒到纳秒时间尺度上的快速运动(称为快速动力学)与蛋白质构象熵和重排密切相关,进而影响催化作用、配体结合和蛋白质异构效应。研究蛋白质快速动力学最常用的核磁共振方法是无模型法,它使用阶次参数 S2 来描述局部基团内部运动的振幅。然而,通过核磁共振实验获得阶次参数相当复杂和漫长。本文提出了一种基于蛋白质核磁共振结构集合预测骨架 1H-15N 阶次参数的机器学习方法。我们使用随机森林模型来学习阶次参数与结构特征之间的关系。我们的方法在预测由 10 个蛋白质组成的测试数据集的骨干 1H-15N 阶次参数时达到了很高的准确度,皮尔逊相关系数为 0.817,均方根误差为 0.131。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of order parameters based on protein NMR structure ensemble and machine learning

Prediction of order parameters based on protein NMR structure ensemble and machine learning

The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter S2 to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone 1H-15N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone 1H-15N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信