Jingyu Lu, Chao Xu, Wesley Dose, Sunita Dey, Xihao Wang, Yehui Wu, Deping Li and Lijie Ci
{"title":"用于锂离子电池的层状富镍正极的微结构。","authors":"Jingyu Lu, Chao Xu, Wesley Dose, Sunita Dey, Xihao Wang, Yehui Wu, Deping Li and Lijie Ci","doi":"10.1039/D3CS00741C","DOIUrl":null,"url":null,"abstract":"<p >Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 9","pages":" 4707-4740"},"PeriodicalIF":39.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructures of layered Ni-rich cathodes for lithium-ion batteries\",\"authors\":\"Jingyu Lu, Chao Xu, Wesley Dose, Sunita Dey, Xihao Wang, Yehui Wu, Deping Li and Lijie Ci\",\"doi\":\"10.1039/D3CS00741C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.</p>\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\" 9\",\"pages\":\" 4707-4740\"},\"PeriodicalIF\":39.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00741c\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00741c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructures of layered Ni-rich cathodes for lithium-ion batteries
Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences