整合大规模可再生能源的集中式共享储能站的动态分区优化运行策略

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianlin Li;Zhijin Fang;Qian Wang;Mengyuan Zhang;Yaxin Li;Weijun Zhang
{"title":"整合大规模可再生能源的集中式共享储能站的动态分区优化运行策略","authors":"Jianlin Li;Zhijin Fang;Qian Wang;Mengyuan Zhang;Yaxin Li;Weijun Zhang","doi":"10.35833/MPCE.2023.000345","DOIUrl":null,"url":null,"abstract":"As renewable energy continues to be integrated into the grid, energy storage has become a vital technique supporting power system development. To effectively promote the efficiency and economics of energy storage, centralized shared energy storage (SES) station with multiple energy storage batteries is developed to enable energy trading among a group of entities. In this paper, we propose the optimal operation with dynamic partitioning strategy for the centralized SES station, considering the day-ahead demands of large-scale renewable energy power plants. We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory. This model is decomposed into two subproblems: the operation profit maximization problem with energy trading and the leasing payment bargaining problem. The distributed alternating direction multiplier method (ADMM) is employed to address the subproblems separately. Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities, enhances the actual utilization rate of energy storage, and increases the profits of each participating entity. The results confirm the practicality and effectiveness of the strategy.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 2","pages":"359-370"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379573","citationCount":"0","resultStr":"{\"title\":\"Optimal Operation with Dynamic Partitioning Strategy for Centralized Shared Energy Storage Station with Integration of Large-scale Renewable Energy\",\"authors\":\"Jianlin Li;Zhijin Fang;Qian Wang;Mengyuan Zhang;Yaxin Li;Weijun Zhang\",\"doi\":\"10.35833/MPCE.2023.000345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As renewable energy continues to be integrated into the grid, energy storage has become a vital technique supporting power system development. To effectively promote the efficiency and economics of energy storage, centralized shared energy storage (SES) station with multiple energy storage batteries is developed to enable energy trading among a group of entities. In this paper, we propose the optimal operation with dynamic partitioning strategy for the centralized SES station, considering the day-ahead demands of large-scale renewable energy power plants. We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory. This model is decomposed into two subproblems: the operation profit maximization problem with energy trading and the leasing payment bargaining problem. The distributed alternating direction multiplier method (ADMM) is employed to address the subproblems separately. Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities, enhances the actual utilization rate of energy storage, and increases the profits of each participating entity. The results confirm the practicality and effectiveness of the strategy.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 2\",\"pages\":\"359-370\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379573\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10379573/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10379573/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源不断并入电网,储能已成为支持电力系统发展的重要技术。为了有效提高储能的效率和经济性,人们开发了带有多个储能电池的集中式共享储能(SES)站,以实现一组实体之间的能量交易。考虑到大型可再生能源发电厂的日前需求,本文提出了集中式共享储能站的动态分区优化运行策略。我们基于纳什讨价还价理论实现了一个多实体合作优化运行模型。该模型被分解为两个子问题:带能源交易的运营利润最大化问题和租赁支付议价问题。采用分布式交替方向乘法(ADMM)分别解决这两个子问题。仿真结果表明,采用动态分区策略的优化运行改善了对可再生能源实体计划产出的跟踪,提高了储能的实际利用率,并增加了各参与实体的利润。结果证实了该策略的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Operation with Dynamic Partitioning Strategy for Centralized Shared Energy Storage Station with Integration of Large-scale Renewable Energy
As renewable energy continues to be integrated into the grid, energy storage has become a vital technique supporting power system development. To effectively promote the efficiency and economics of energy storage, centralized shared energy storage (SES) station with multiple energy storage batteries is developed to enable energy trading among a group of entities. In this paper, we propose the optimal operation with dynamic partitioning strategy for the centralized SES station, considering the day-ahead demands of large-scale renewable energy power plants. We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory. This model is decomposed into two subproblems: the operation profit maximization problem with energy trading and the leasing payment bargaining problem. The distributed alternating direction multiplier method (ADMM) is employed to address the subproblems separately. Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities, enhances the actual utilization rate of energy storage, and increases the profits of each participating entity. The results confirm the practicality and effectiveness of the strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信