{"title":"代数函数场的卡利茨二项式系数的不可逆性质","authors":"Robert Tichy , Daniel Windisch","doi":"10.1016/j.ffa.2024.102413","DOIUrl":null,"url":null,"abstract":"<div><p>We study the class of univariate polynomials <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, introduced by Carlitz, with coefficients in the algebraic function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with <em>q</em> elements. It is implicit in the work of Carlitz that these polynomials form an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>|</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>⊆</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>}</mo></math></span> of integer-valued polynomials on the polynomial ring <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. This stands in close analogy to the famous fact that a <span><math><mi>Z</mi></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> is given by the binomial polynomials <span><math><mo>(</mo><mtable><mtr><mtd><mi>X</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>.</p><p>We prove, for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>, where <em>s</em> is a non-negative integer, that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is irreducible in <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> and that it is even absolutely irreducible, that is, all of its powers <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> with <span><math><mi>m</mi><mo>></mo><mn>0</mn></math></span> factor uniquely as products of irreducible elements of this ring. As we show, this result is optimal in the sense that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not even irreducible if <em>k</em> is not a power of <em>q</em>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102413"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000522/pdfft?md5=03cc03a1cb4e3126319ead5a88957a4f&pid=1-s2.0-S1071579724000522-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Irreducibility properties of Carlitz' binomial coefficients for algebraic function fields\",\"authors\":\"Robert Tichy , Daniel Windisch\",\"doi\":\"10.1016/j.ffa.2024.102413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the class of univariate polynomials <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, introduced by Carlitz, with coefficients in the algebraic function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with <em>q</em> elements. It is implicit in the work of Carlitz that these polynomials form an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>|</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo><mo>⊆</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>}</mo></math></span> of integer-valued polynomials on the polynomial ring <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. This stands in close analogy to the famous fact that a <span><math><mi>Z</mi></math></span>-module basis of the ring <span><math><mi>Int</mi><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> is given by the binomial polynomials <span><math><mo>(</mo><mtable><mtr><mtd><mi>X</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span>.</p><p>We prove, for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>, where <em>s</em> is a non-negative integer, that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is irreducible in <span><math><mi>Int</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> and that it is even absolutely irreducible, that is, all of its powers <span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> with <span><math><mi>m</mi><mo>></mo><mn>0</mn></math></span> factor uniquely as products of irreducible elements of this ring. As we show, this result is optimal in the sense that <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not even irreducible if <em>k</em> is not a power of <em>q</em>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"96 \",\"pages\":\"Article 102413\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000522/pdfft?md5=03cc03a1cb4e3126319ead5a88957a4f&pid=1-s2.0-S1071579724000522-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000522\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Irreducibility properties of Carlitz' binomial coefficients for algebraic function fields
We study the class of univariate polynomials , introduced by Carlitz, with coefficients in the algebraic function field over the finite field with q elements. It is implicit in the work of Carlitz that these polynomials form an -module basis of the ring of integer-valued polynomials on the polynomial ring . This stands in close analogy to the famous fact that a -module basis of the ring is given by the binomial polynomials .
We prove, for , where s is a non-negative integer, that is irreducible in and that it is even absolutely irreducible, that is, all of its powers with factor uniquely as products of irreducible elements of this ring. As we show, this result is optimal in the sense that is not even irreducible if k is not a power of q.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.