Rahul C Basole, Timothy Major, Rahul C Basole, Francesco Ferrise
{"title":"用于可视化的生成式人工智能:机遇与挑战。","authors":"Rahul C Basole, Timothy Major, Rahul C Basole, Francesco Ferrise","doi":"10.1109/MCG.2024.3362168","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in artificial intelligence (AI) and machine learning (ML) have led to the creation of powerful generative AI methods and tools capable of producing text, code, images, and other media in response to user prompts. Significant interest in the technology has led to speculation about what fields, including visualization, can be augmented or replaced by such approaches. However, there remains a lack of understanding about which visualization activities may be particularly suitable for the application of generative AI. Drawing on examples from the field, we map current and emerging capabilities of generative AI across the different phases of the visualization lifecycle and describe salient opportunities and challenges.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"44 2","pages":"55-64"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative AI for Visualization: Opportunities and Challenges.\",\"authors\":\"Rahul C Basole, Timothy Major, Rahul C Basole, Francesco Ferrise\",\"doi\":\"10.1109/MCG.2024.3362168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in artificial intelligence (AI) and machine learning (ML) have led to the creation of powerful generative AI methods and tools capable of producing text, code, images, and other media in response to user prompts. Significant interest in the technology has led to speculation about what fields, including visualization, can be augmented or replaced by such approaches. However, there remains a lack of understanding about which visualization activities may be particularly suitable for the application of generative AI. Drawing on examples from the field, we map current and emerging capabilities of generative AI across the different phases of the visualization lifecycle and describe salient opportunities and challenges.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"44 2\",\"pages\":\"55-64\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2024.3362168\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2024.3362168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Generative AI for Visualization: Opportunities and Challenges.
Recent developments in artificial intelligence (AI) and machine learning (ML) have led to the creation of powerful generative AI methods and tools capable of producing text, code, images, and other media in response to user prompts. Significant interest in the technology has led to speculation about what fields, including visualization, can be augmented or replaced by such approaches. However, there remains a lack of understanding about which visualization activities may be particularly suitable for the application of generative AI. Drawing on examples from the field, we map current and emerging capabilities of generative AI across the different phases of the visualization lifecycle and describe salient opportunities and challenges.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.