用于验证和预测过氧化氢(H2O2)化学引物和发光二极管对离体种植工业大麻(Cannabis sativa L.)影响的人工智能模型。

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Muhammad Aasim, Buşra Yıldırım, Ahmet Say, Seyid Amjad Ali, Selim Aytaç, Muhammad Azhar Nadeem
{"title":"用于验证和预测过氧化氢(H2O2)化学引物和发光二极管对离体种植工业大麻(Cannabis sativa L.)影响的人工智能模型。","authors":"Muhammad Aasim, Buşra Yıldırım, Ahmet Say, Seyid Amjad Ali, Selim Aytaç, Muhammad Azhar Nadeem","doi":"10.1007/s11103-024-01427-y","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H<sub>2</sub>O<sub>2</sub> × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H<sub>2</sub>O<sub>2</sub> × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H<sub>2</sub>O<sub>2</sub> and grown under different LED lights.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.).\",\"authors\":\"Muhammad Aasim, Buşra Yıldırım, Ahmet Say, Seyid Amjad Ali, Selim Aytaç, Muhammad Azhar Nadeem\",\"doi\":\"10.1007/s11103-024-01427-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H<sub>2</sub>O<sub>2</sub> × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H<sub>2</sub>O<sub>2</sub> × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H<sub>2</sub>O<sub>2</sub> and grown under different LED lights.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-024-01427-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01427-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

工业大麻(Cannabis sativa L.)是一种在体外条件下非常顽固的植物,但可以通过外部刺激加以克服。用 2.0%-3.0% 的过氧化氢(H2O2)对大麻种子进行催芽,然后在不同的发光二极管(LED)光源下进行培养。用 2.0% 的过氧化氢对种子进行催芽,可获得相对较高的发芽率、生长以及其他生化和酶活性。LED 光源对大麻萌芽和酶活性的影响各不相同。同样,对 H2O2 × 蓝光 LED 组合的反应也不尽相同。还对结果进行了多元回归分析,随后用帕累托图和正态图研究了两个因素的影响。所有参数的结果都通过等高线图和曲面图进行了优化。响应面优化器优化了 2.0% H2O2 × 918 LUX LED,使所有输出参数得分最高。采用多层感知器(MLP)、随机森林(RF)和极端梯度提升(XGBoost)算法对结果进行了预测。此外,还使用六种不同的性能指标对这些模型的有效性进行了评估。在所有六项性能指标中,MLP 的表现均优于 RF 和 XGBoost 模型。尽管得分存在差异,但所有考察模型的性能指标都非常接近。由此不难得出结论,所有这三种模型都能够预测和验证用 H2O2 诱导并在不同 LED 灯下生长的大麻籽的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.).

Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H2O2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.).

Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信