{"title":"用于酸性磷酸酶比色检测的碳点的磷调制过氧化物酶样活性","authors":"Yongmei Zhang, Haibo Liang, Xinru Wang, Ying Yu, Yujuan Cao, Manli Guo, Bixia Lin","doi":"10.1177/00037028241238246","DOIUrl":null,"url":null,"abstract":"<p><p>The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"633-643"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus Modulated Peroxidase-Like Activity of Carbon Dots for Colorimetric Detection of Acid Phosphatase.\",\"authors\":\"Yongmei Zhang, Haibo Liang, Xinru Wang, Ying Yu, Yujuan Cao, Manli Guo, Bixia Lin\",\"doi\":\"10.1177/00037028241238246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"633-643\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241238246\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241238246","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Phosphorus Modulated Peroxidase-Like Activity of Carbon Dots for Colorimetric Detection of Acid Phosphatase.
The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”