对多肉芽孢杆菌的碳和氧化还原代谢进行工程改造,以高效生产异丁醇。

IF 5.7 2区 生物学
Meliawati Meliawati, Daniel C. Volke, Pablo I. Nikel, Jochen Schmid
{"title":"对多肉芽孢杆菌的碳和氧化还原代谢进行工程改造,以高效生产异丁醇。","authors":"Meliawati Meliawati,&nbsp;Daniel C. Volke,&nbsp;Pablo I. Nikel,&nbsp;Jochen Schmid","doi":"10.1111/1751-7915.14438","DOIUrl":null,"url":null,"abstract":"<p><i>Paenibacillus polymyxa</i> is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered <i>P. polymyxa</i> for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of <i>P. polymyxa</i>, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (<i>kdcA</i> from <i>Lactococcus lactis</i>, and the native <i>ilvC</i>, <i>ilvD</i> and <i>adh</i> genes) produced 1 g L<sup>−1</sup> isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of <i>P. polymyxa</i> to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating <i>P. polymyxa</i> in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for <i>P. polymyxa</i>. Our rational metabolic engineering of <i>P. polymyxa</i> for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14438","citationCount":"0","resultStr":"{\"title\":\"Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production\",\"authors\":\"Meliawati Meliawati,&nbsp;Daniel C. Volke,&nbsp;Pablo I. Nikel,&nbsp;Jochen Schmid\",\"doi\":\"10.1111/1751-7915.14438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Paenibacillus polymyxa</i> is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered <i>P. polymyxa</i> for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of <i>P. polymyxa</i>, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (<i>kdcA</i> from <i>Lactococcus lactis</i>, and the native <i>ilvC</i>, <i>ilvD</i> and <i>adh</i> genes) produced 1 g L<sup>−1</sup> isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of <i>P. polymyxa</i> to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating <i>P. polymyxa</i> in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for <i>P. polymyxa</i>. Our rational metabolic engineering of <i>P. polymyxa</i> for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14438\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14438\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多粘菌属(Paenibacillus polymyxa)是一种非致病性革兰氏阳性细菌,具有丰富多样的新陈代谢。然而,迄今为止,这种细菌还很少被用于生物生产。在本研究中,我们改造了 P. polymyxa 来生产异丁醇,这是一种相关的大宗化学品和下一代生物燃料。基于 CRISPR-Cas9 的基因组编辑工具促进了合成操作子的染色体整合,从而建立了异丁醇的生产。导致多粘杆菌主要发酵产物的 2,3-丁二醇生物合成途径被消除。携带合成异丁醇操作子(来自乳酸乳球菌的 kdcA 以及原生的 ilvC、ilvD 和 adh 基因)的突变菌株在微氧条件下能产生 1 g L-1 的异丁醇。通过过量表达苹果酸酶来改善 NADPH 的再生,随后产品滴度提高了 50%。全网络蛋白质组学深入揭示了多粘菌对异丁醇的反应,并揭示了酒精生产引起的重大代谢转变。葡萄糖-6-磷酸 1-脱氢酶是磷酸戊糖途径中的关键酶,它被确定为阻碍通过该途径高效再生 NADPH 的瓶颈。此外,我们还进行了培养优化,以便在合成的最小培养基中培养多粘菌。我们发现生物素(B7)、泛酸(B5)和叶酸(B9)是多粘杆菌共同必需的维生素。我们对多粘菌进行了合理的代谢工程改造,以生产异源化学物质,这揭示了该细菌的新陈代谢过程,有助于进一步开发生物技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production

Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production

Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L−1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信