Mikhail Nikolaevich Kruk , Anna Gennadievna Doroshkevich , Ilya Romanovich Prokopyev , Ivan Aleksandrovich Izbrodin
{"title":"阿尔巴拉斯塔克复合岩(雅库特萨哈共和国阿尔丹地盾)中主要和次要矿物的化学演变过程","authors":"Mikhail Nikolaevich Kruk , Anna Gennadievna Doroshkevich , Ilya Romanovich Prokopyev , Ivan Aleksandrovich Izbrodin","doi":"10.1016/j.geogeo.2024.100271","DOIUrl":null,"url":null,"abstract":"<div><div>The alkaline-ultrabasic carbonatite complex Arbarastakh is located in the southwestern part of the Siberian Craton. In addition to ultrabasic rocks such as pyroxenites and ijolites, various types of carbonatite dikes, phoscorites, and aillikites are present in the massif. Based on their modal and compositional characteristics, as well as the chemical composition of minerals, the rocks of the Arbarastakh complex have been divided into three groups: \"aillikite\", \"phoscorite\", and \"alkaline-silicate and carbonatite\" groups. The chemical compositions of olivines, phlogopites and spinellides indicate that aillikites are the least differentiated rocks in the complex. The compositional differences of micas from the \"phoscorite\" and \"alkaline-silicate and carbonatite\" groups support the liquation of the aillikite melt into two immiscible silicates and CPIO (carbonate-phosphate/iron-oxide-rich) melts. After liquation, for the \"phoscorite\" and \"alkaline-silicate and carbonatite\" groups, evolution follows fractional crystallization. Pyroxene-phlogopite-calcite and calcite carbonatites probably resulted from metasomatic alteration of silicate phases by apatite-dolomite carbonatites, which is confirmed by structural-textural features and the overlapping compositions of phlogopites, apatites and pyroxenes from calcite carbonatites and those from pyroxenites and ijolites.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"3 4","pages":"Article 100271"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical evolution of major and minor minerals in rocks of the Arbarastakh complex (Aldan shield, Republic of Sakha, Yakutia)\",\"authors\":\"Mikhail Nikolaevich Kruk , Anna Gennadievna Doroshkevich , Ilya Romanovich Prokopyev , Ivan Aleksandrovich Izbrodin\",\"doi\":\"10.1016/j.geogeo.2024.100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The alkaline-ultrabasic carbonatite complex Arbarastakh is located in the southwestern part of the Siberian Craton. In addition to ultrabasic rocks such as pyroxenites and ijolites, various types of carbonatite dikes, phoscorites, and aillikites are present in the massif. Based on their modal and compositional characteristics, as well as the chemical composition of minerals, the rocks of the Arbarastakh complex have been divided into three groups: \\\"aillikite\\\", \\\"phoscorite\\\", and \\\"alkaline-silicate and carbonatite\\\" groups. The chemical compositions of olivines, phlogopites and spinellides indicate that aillikites are the least differentiated rocks in the complex. The compositional differences of micas from the \\\"phoscorite\\\" and \\\"alkaline-silicate and carbonatite\\\" groups support the liquation of the aillikite melt into two immiscible silicates and CPIO (carbonate-phosphate/iron-oxide-rich) melts. After liquation, for the \\\"phoscorite\\\" and \\\"alkaline-silicate and carbonatite\\\" groups, evolution follows fractional crystallization. Pyroxene-phlogopite-calcite and calcite carbonatites probably resulted from metasomatic alteration of silicate phases by apatite-dolomite carbonatites, which is confirmed by structural-textural features and the overlapping compositions of phlogopites, apatites and pyroxenes from calcite carbonatites and those from pyroxenites and ijolites.</div></div>\",\"PeriodicalId\":100582,\"journal\":{\"name\":\"Geosystems and Geoenvironment\",\"volume\":\"3 4\",\"pages\":\"Article 100271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystems and Geoenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772883824000219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883824000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical evolution of major and minor minerals in rocks of the Arbarastakh complex (Aldan shield, Republic of Sakha, Yakutia)
The alkaline-ultrabasic carbonatite complex Arbarastakh is located in the southwestern part of the Siberian Craton. In addition to ultrabasic rocks such as pyroxenites and ijolites, various types of carbonatite dikes, phoscorites, and aillikites are present in the massif. Based on their modal and compositional characteristics, as well as the chemical composition of minerals, the rocks of the Arbarastakh complex have been divided into three groups: "aillikite", "phoscorite", and "alkaline-silicate and carbonatite" groups. The chemical compositions of olivines, phlogopites and spinellides indicate that aillikites are the least differentiated rocks in the complex. The compositional differences of micas from the "phoscorite" and "alkaline-silicate and carbonatite" groups support the liquation of the aillikite melt into two immiscible silicates and CPIO (carbonate-phosphate/iron-oxide-rich) melts. After liquation, for the "phoscorite" and "alkaline-silicate and carbonatite" groups, evolution follows fractional crystallization. Pyroxene-phlogopite-calcite and calcite carbonatites probably resulted from metasomatic alteration of silicate phases by apatite-dolomite carbonatites, which is confirmed by structural-textural features and the overlapping compositions of phlogopites, apatites and pyroxenes from calcite carbonatites and those from pyroxenites and ijolites.