考虑水流效应的植被波浪衰减理论模型

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Huiran Liu, Haiqi Fang, Pengzhi Lin
{"title":"考虑水流效应的植被波浪衰减理论模型","authors":"Huiran Liu,&nbsp;Haiqi Fang,&nbsp;Pengzhi Lin","doi":"10.1016/j.coastaleng.2024.104508","DOIUrl":null,"url":null,"abstract":"<div><p>A new theoretical model is derived to predict wave attenuation in an emerged vegetation domain under current influences by considering the current effects on changing both wave group velocity and energy dissipation rate. Considering the current effect on changing wave group velocity, the theory predicts an asymmetric behavior of wave decay in following and opposing currents, different from the earlier theory that predicts a symmetry decay behavior by ignoring the current effect on wave group velocity. The new theory dictates that as the current speed increases, the rate of wave decay changes from the traditionally reciprocal law to the exponential law, where the mixed exponential and reciprocal decay law exists under intermediate current conditions. Furthermore, the present theory can be reduced to an explicit expression of the drag coefficient for weak and strong current conditions. In addition, the theory shows that the decay rate depends on both incident wave amplitude and current velocity when the current velocity is relatively small to wave orbital velocity, whereas it is independent of incident wave amplitude when the current is strong. All of these wave decaying characteristics predicted by the theory have been confirmed by the available experimental data and the numerical results from a 2D RANS model (NEWFLUME).</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical model for wave attenuation by vegetation considering current effects\",\"authors\":\"Huiran Liu,&nbsp;Haiqi Fang,&nbsp;Pengzhi Lin\",\"doi\":\"10.1016/j.coastaleng.2024.104508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new theoretical model is derived to predict wave attenuation in an emerged vegetation domain under current influences by considering the current effects on changing both wave group velocity and energy dissipation rate. Considering the current effect on changing wave group velocity, the theory predicts an asymmetric behavior of wave decay in following and opposing currents, different from the earlier theory that predicts a symmetry decay behavior by ignoring the current effect on wave group velocity. The new theory dictates that as the current speed increases, the rate of wave decay changes from the traditionally reciprocal law to the exponential law, where the mixed exponential and reciprocal decay law exists under intermediate current conditions. Furthermore, the present theory can be reduced to an explicit expression of the drag coefficient for weak and strong current conditions. In addition, the theory shows that the decay rate depends on both incident wave amplitude and current velocity when the current velocity is relatively small to wave orbital velocity, whereas it is independent of incident wave amplitude when the current is strong. All of these wave decaying characteristics predicted by the theory have been confirmed by the available experimental data and the numerical results from a 2D RANS model (NEWFLUME).</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924000565\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑水流对波群速度和能量耗散率的影响,得出了一个新的理论模型,用于预测水流影响下新出现植被区域的波浪衰减。考虑到海流对波群速度变化的影响,该理论预测了波浪在顺流和逆流中的非对称衰减行为,不同于早期理论通过忽略海流对波群速度的影响而预测的对称衰减行为。新理论认为,随着水流速度的增加,波浪衰减率会从传统的倒数法则变为指数法则,在中间水流条件下,会出现指数和倒数混合衰减法则。此外,本理论可简化为弱流和强流条件下阻力系数的明确表达式。此外,该理论还表明,当水流速度相对于波浪轨道速度较小时,衰减率取决于入射波幅和水流速度,而当水流较强时,衰减率则与入射波幅无关。现有的实验数据和二维 RANS 模型(NEWFLUME)的数值结果证实了该理论预测的所有这些波浪衰减特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical model for wave attenuation by vegetation considering current effects

A new theoretical model is derived to predict wave attenuation in an emerged vegetation domain under current influences by considering the current effects on changing both wave group velocity and energy dissipation rate. Considering the current effect on changing wave group velocity, the theory predicts an asymmetric behavior of wave decay in following and opposing currents, different from the earlier theory that predicts a symmetry decay behavior by ignoring the current effect on wave group velocity. The new theory dictates that as the current speed increases, the rate of wave decay changes from the traditionally reciprocal law to the exponential law, where the mixed exponential and reciprocal decay law exists under intermediate current conditions. Furthermore, the present theory can be reduced to an explicit expression of the drag coefficient for weak and strong current conditions. In addition, the theory shows that the decay rate depends on both incident wave amplitude and current velocity when the current velocity is relatively small to wave orbital velocity, whereas it is independent of incident wave amplitude when the current is strong. All of these wave decaying characteristics predicted by the theory have been confirmed by the available experimental data and the numerical results from a 2D RANS model (NEWFLUME).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信