各向异性的 V3O7 纳米颗粒实现了镁离子电池的超长循环寿命

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Xiu-Fen Ma , Hong-Yi Li , Jing Tan , Jinan Wang , Jiang Diao , Jili Yue , Shuangshuang Tan , Guangsheng Huang , Jingfeng Wang , Fusheng Pan
{"title":"各向异性的 V3O7 纳米颗粒实现了镁离子电池的超长循环寿命","authors":"Xiu-Fen Ma ,&nbsp;Hong-Yi Li ,&nbsp;Jing Tan ,&nbsp;Jinan Wang ,&nbsp;Jiang Diao ,&nbsp;Jili Yue ,&nbsp;Shuangshuang Tan ,&nbsp;Guangsheng Huang ,&nbsp;Jingfeng Wang ,&nbsp;Fusheng Pan","doi":"10.1016/j.jma.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium ion batteries (MIBs) are a promising alternative to lithium-ion batteries, which suffer from the short cycling life and sluggish Mg<sup>2+</sup> diffusion kinetics of cathodes. Nano morphologies are used to shorten Mg<sup>2+</sup> diffusion path for diffusion kinetics acceleration, but the cycling life is still unsatisfactory. Herein, the anisotropy of layered V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts is utilized to stabilize their structure during discharging/charging. The V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts grow along the preponderant migration direction of Mg<sup>2+</sup>, and the resulted axial migration of Mg<sup>2+</sup> enables the stress caused by Mg<sup>2+</sup> insertion to be decentralized in large zone, thus improving the cycling stability of V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts. The inserted Mg<sup>2+</sup> cations bond with O atoms in adjacent V<sub>3</sub>O<sub>8</sub> layers of V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O, further stablizing the layered structure. Meanwhile, the axial migration of Mg<sup>2+</sup> significantly reduces the charge transfer resistance at electrode/electrolyte interface, which accelerates the Mg<sup>2+</sup> diffusion kinetics. Thus, the symmetric RMB assembled from V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts exhibits an ultralong cycling life of 11,000 cycles at 4 A g<sup>−1</sup>, alongside a high specific capacity of 137 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>. According to our knowledge, this ultralong cycling life surpasses those of reported full RMBs. This strategy provides insight into the design of cathode materials with improved cycling lives.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 4","pages":"Pages 1592-1601"},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropy of V3O7 nanobelts enables ultralong cycling life of magnesium ion battery\",\"authors\":\"Xiu-Fen Ma ,&nbsp;Hong-Yi Li ,&nbsp;Jing Tan ,&nbsp;Jinan Wang ,&nbsp;Jiang Diao ,&nbsp;Jili Yue ,&nbsp;Shuangshuang Tan ,&nbsp;Guangsheng Huang ,&nbsp;Jingfeng Wang ,&nbsp;Fusheng Pan\",\"doi\":\"10.1016/j.jma.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnesium ion batteries (MIBs) are a promising alternative to lithium-ion batteries, which suffer from the short cycling life and sluggish Mg<sup>2+</sup> diffusion kinetics of cathodes. Nano morphologies are used to shorten Mg<sup>2+</sup> diffusion path for diffusion kinetics acceleration, but the cycling life is still unsatisfactory. Herein, the anisotropy of layered V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts is utilized to stabilize their structure during discharging/charging. The V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts grow along the preponderant migration direction of Mg<sup>2+</sup>, and the resulted axial migration of Mg<sup>2+</sup> enables the stress caused by Mg<sup>2+</sup> insertion to be decentralized in large zone, thus improving the cycling stability of V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts. The inserted Mg<sup>2+</sup> cations bond with O atoms in adjacent V<sub>3</sub>O<sub>8</sub> layers of V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O, further stablizing the layered structure. Meanwhile, the axial migration of Mg<sup>2+</sup> significantly reduces the charge transfer resistance at electrode/electrolyte interface, which accelerates the Mg<sup>2+</sup> diffusion kinetics. Thus, the symmetric RMB assembled from V<sub>3</sub>O<sub>7</sub>⋅1.9H<sub>2</sub>O nanobelts exhibits an ultralong cycling life of 11,000 cycles at 4 A g<sup>−1</sup>, alongside a high specific capacity of 137 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>. According to our knowledge, this ultralong cycling life surpasses those of reported full RMBs. This strategy provides insight into the design of cathode materials with improved cycling lives.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 4\",\"pages\":\"Pages 1592-1601\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221395672400094X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221395672400094X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁离子电池(MIBs)是一种很有前途的锂离子电池替代品,锂离子电池存在循环寿命短和阴极Mg2+扩散动力学缓慢的问题。纳米形貌可以缩短Mg2+的扩散路径,加速扩散动力学,但循环寿命仍不理想。本文利用层状V3O7·1.9H2O纳米带的各向异性在放电/充电过程中稳定其结构。V3O7·1.9H2O纳米带沿Mg2+的优势迁移方向生长,Mg2+的轴向迁移使Mg2+插入引起的应力在大范围内分散,从而提高了V3O7·1.9H2O纳米带的循环稳定性。插入的Mg2+阳离子与相邻V3O7⋅1.9H2O的V3O8层中的O原子结合,进一步稳定了层状结构。同时,Mg2+的轴向迁移显著降低了电极/电解质界面的电荷转移阻力,加速了Mg2+的扩散动力学。因此,由V3O7·1.9H2O纳米带组装的对称RMB在4 A g−1下具有11,000次的超长循环寿命,在0.05 A g−1下具有137 mAh g−1的高比容量。据我们所知,这种超长的循环寿命超过了报道的满人民币。这一策略为改进循环寿命的阴极材料的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropy of V3O7 nanobelts enables ultralong cycling life of magnesium ion battery
Magnesium ion batteries (MIBs) are a promising alternative to lithium-ion batteries, which suffer from the short cycling life and sluggish Mg2+ diffusion kinetics of cathodes. Nano morphologies are used to shorten Mg2+ diffusion path for diffusion kinetics acceleration, but the cycling life is still unsatisfactory. Herein, the anisotropy of layered V3O7⋅1.9H2O nanobelts is utilized to stabilize their structure during discharging/charging. The V3O7⋅1.9H2O nanobelts grow along the preponderant migration direction of Mg2+, and the resulted axial migration of Mg2+ enables the stress caused by Mg2+ insertion to be decentralized in large zone, thus improving the cycling stability of V3O7⋅1.9H2O nanobelts. The inserted Mg2+ cations bond with O atoms in adjacent V3O8 layers of V3O7⋅1.9H2O, further stablizing the layered structure. Meanwhile, the axial migration of Mg2+ significantly reduces the charge transfer resistance at electrode/electrolyte interface, which accelerates the Mg2+ diffusion kinetics. Thus, the symmetric RMB assembled from V3O7⋅1.9H2O nanobelts exhibits an ultralong cycling life of 11,000 cycles at 4 A g−1, alongside a high specific capacity of 137 mAh g−1 at 0.05 A g−1. According to our knowledge, this ultralong cycling life surpasses those of reported full RMBs. This strategy provides insight into the design of cathode materials with improved cycling lives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信