基於動作影像追蹤於坐姿賦能運動量化評估與分析

莊濱鴻 莊濱鴻, 楊珮菁 楊珮菁, 邱毓賢 邱毓賢, 陳奕安 陳奕安, 莊宜達 Yi-an Chen
{"title":"基於動作影像追蹤於坐姿賦能運動量化評估與分析","authors":"莊濱鴻 莊濱鴻, 楊珮菁 楊珮菁, 邱毓賢 邱毓賢, 陳奕安 陳奕安, 莊宜達 Yi-an Chen","doi":"10.53106/207332672024032101004","DOIUrl":null,"url":null,"abstract":"\n 目的:本研究目的為應用人工智慧動作影像追蹤技術量化分析坐姿運動器材之靜動態運動姿態及表現。方法:透過影像追蹤技術探討「主被動混合運動訓練器」採正確坐姿之適體擺位乘坐於可扭擺的座墊上,分別進行上肢平握及上肢上舉兩種姿態,並以兩種迴轉數 (60、80 RPM) 進行身體骨架節點的即時追蹤與計算,再以描述性統計和成對樣本 t 檢定進行驗證。結果:坐姿運動器材運作過程中,利用上下肢體肌肉的力量以維持身體之平衡確實在不同坐姿下的 60 與 80 RPM 達顯著差異。結論:基於本研究所開發的動作影像追蹤軟體平台,確實能提供人體動作的即時擷取和量化分析運動數據。本研究之整體架構與實驗設計皆呈現其可行性與實用性。\n Purpose: The study aimed to apply artificial intelligence for motion capture and body tracking to analyze movement data characteristics of static and dynamic movement posture and performance. Methods: Using motion image tracking technology, the study employs a specially designed seat with adjustable rotation to ensure correct sitting posture, and the inventor of this study sits on this seat. Two upper limb positions, namely dual-hand grip and lifting movements, are performed at frequencies of 60 rpm and 80 rpm. Body skeletal joint calculations are conducted, and descriptive statistics and Paired Sample t-test are employed to validate the differences among the four combinations. Results: During the operation of the machine, utilizing the strength of the upper and lower limb muscles to maintain body balance indeed results in significant differences in the trajectory and characteristics of the four-movement groups. Conclusion: This research developed the image tracking software platform to validate and analyze quantitative movement data. The overall architecture and experimental design of the study are feasible and practicable.\n \n","PeriodicalId":142524,"journal":{"name":"華人運動生物力學期刊","volume":"125 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基於動作影像追蹤於坐姿賦能運動量化評估與分析\",\"authors\":\"莊濱鴻 莊濱鴻, 楊珮菁 楊珮菁, 邱毓賢 邱毓賢, 陳奕安 陳奕安, 莊宜達 Yi-an Chen\",\"doi\":\"10.53106/207332672024032101004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n 目的:本研究目的為應用人工智慧動作影像追蹤技術量化分析坐姿運動器材之靜動態運動姿態及表現。方法:透過影像追蹤技術探討「主被動混合運動訓練器」採正確坐姿之適體擺位乘坐於可扭擺的座墊上,分別進行上肢平握及上肢上舉兩種姿態,並以兩種迴轉數 (60、80 RPM) 進行身體骨架節點的即時追蹤與計算,再以描述性統計和成對樣本 t 檢定進行驗證。結果:坐姿運動器材運作過程中,利用上下肢體肌肉的力量以維持身體之平衡確實在不同坐姿下的 60 與 80 RPM 達顯著差異。結論:基於本研究所開發的動作影像追蹤軟體平台,確實能提供人體動作的即時擷取和量化分析運動數據。本研究之整體架構與實驗設計皆呈現其可行性與實用性。\\n Purpose: The study aimed to apply artificial intelligence for motion capture and body tracking to analyze movement data characteristics of static and dynamic movement posture and performance. Methods: Using motion image tracking technology, the study employs a specially designed seat with adjustable rotation to ensure correct sitting posture, and the inventor of this study sits on this seat. Two upper limb positions, namely dual-hand grip and lifting movements, are performed at frequencies of 60 rpm and 80 rpm. Body skeletal joint calculations are conducted, and descriptive statistics and Paired Sample t-test are employed to validate the differences among the four combinations. Results: During the operation of the machine, utilizing the strength of the upper and lower limb muscles to maintain body balance indeed results in significant differences in the trajectory and characteristics of the four-movement groups. Conclusion: This research developed the image tracking software platform to validate and analyze quantitative movement data. The overall architecture and experimental design of the study are feasible and practicable.\\n \\n\",\"PeriodicalId\":142524,\"journal\":{\"name\":\"華人運動生物力學期刊\",\"volume\":\"125 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"華人運動生物力學期刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/207332672024032101004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"華人運動生物力學期刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/207332672024032101004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究目的為應用人工智慧動作影像追蹤技術量化分析坐姿運動器材之靜動運動姿態及表現。方法:透過影像追蹤技術探討「主被動混合運動訓練器」採正確坐姿之適體擺位乘坐於可扭擺的座墊上,分別進行上肢平握及上肢舉舉兩種姿態,並以兩種迴轉數 (60、80 rpm) 進行身體骨架節點的即時追蹤與計算,再以描述性統計和對成樣本檢定進行驗證。結論:基於本研究所開發的動作影像追蹤軟體平台,確實能提供人體動作的即時擷 取和量化分析運動數據:本研究旨在應用人工智能的動作擷取與身體追蹤,分析靜態與動態動作姿勢與表現的運動數據特徵。研究方法:本研究采用运动图像跟踪技术,采用专门设计的可调节旋转的座椅,以确保正确的坐姿,本研究的发明人就坐在这个座椅上。在 60 rpm 和 80 rpm 的频率下进行两种上肢姿势,即双手握拳和举起动作。对身体骨骼关节进行计算,并采用描述性统计和配对样本 t 检验来验证四种组合之间的差异。结果在机器操作过程中,利用上肢和下肢肌肉的力量保持身体平衡确实会导致四个动作组的运动轨迹和特征存在显著差异。结论本研究开发了图像跟踪软件平台,用于验证和分析定量运动数据。研究的整体架构和实验设计切实可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
基於動作影像追蹤於坐姿賦能運動量化評估與分析
目的:本研究目的為應用人工智慧動作影像追蹤技術量化分析坐姿運動器材之靜動態運動姿態及表現。方法:透過影像追蹤技術探討「主被動混合運動訓練器」採正確坐姿之適體擺位乘坐於可扭擺的座墊上,分別進行上肢平握及上肢上舉兩種姿態,並以兩種迴轉數 (60、80 RPM) 進行身體骨架節點的即時追蹤與計算,再以描述性統計和成對樣本 t 檢定進行驗證。結果:坐姿運動器材運作過程中,利用上下肢體肌肉的力量以維持身體之平衡確實在不同坐姿下的 60 與 80 RPM 達顯著差異。結論:基於本研究所開發的動作影像追蹤軟體平台,確實能提供人體動作的即時擷取和量化分析運動數據。本研究之整體架構與實驗設計皆呈現其可行性與實用性。  Purpose: The study aimed to apply artificial intelligence for motion capture and body tracking to analyze movement data characteristics of static and dynamic movement posture and performance. Methods: Using motion image tracking technology, the study employs a specially designed seat with adjustable rotation to ensure correct sitting posture, and the inventor of this study sits on this seat. Two upper limb positions, namely dual-hand grip and lifting movements, are performed at frequencies of 60 rpm and 80 rpm. Body skeletal joint calculations are conducted, and descriptive statistics and Paired Sample t-test are employed to validate the differences among the four combinations. Results: During the operation of the machine, utilizing the strength of the upper and lower limb muscles to maintain body balance indeed results in significant differences in the trajectory and characteristics of the four-movement groups. Conclusion: This research developed the image tracking software platform to validate and analyze quantitative movement data. The overall architecture and experimental design of the study are feasible and practicable.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信