从 CeZrNiO2 固溶体中原位溶出超细镍纳米颗粒,用于高效光热催化 CO2 还原 CH4

Guanrui Ji , Lei Ji , Shaowen Wu , Lingxin Meng , Yuteng Jia , Zhanning Liu , Shihua Dong , Jian Tian , Yuanzhi Li
{"title":"从 CeZrNiO2 固溶体中原位溶出超细镍纳米颗粒,用于高效光热催化 CO2 还原 CH4","authors":"Guanrui Ji ,&nbsp;Lei Ji ,&nbsp;Shaowen Wu ,&nbsp;Lingxin Meng ,&nbsp;Yuteng Jia ,&nbsp;Zhanning Liu ,&nbsp;Shihua Dong ,&nbsp;Jian Tian ,&nbsp;Yuanzhi Li","doi":"10.1016/j.apmate.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> reduction by CH<sub>4</sub> (CRM) to produce fuel is of great significance for solar energy storage and eliminating greenhouse gas. Herein, the catalyst of ultrafine Ni nanoparticles supported on CeZrNiO<sub>2</sub> solid solution (Ni@CZNO) was synthesized by the sol-gel method. High yield of H<sub>2</sub> and CO (58.0 and 69.8 ​mmol ​min<sup>−1</sup> ​g<sup>−1</sup>) and excellent durability (50 ​h) were achieved by photothermal catalytic CRM merely under focused light irradiation. Structural characterization and DFT calculations reveal that CZNO has rich oxygen vacancies that can adsorb and activate CO<sub>2</sub> to produce reactive oxygen species. Oxygen species are transferred to ultrafine Ni nanoparticles through the rich Ni-CZNO interface to accelerate carbon oxidation, thereby maintaining the excellent catalytic stability of the catalyst. Moreover, the experimental results reveal that light irradiation can not only enhance the photothermal catalytic CRM activity through photothermal conversion and molecular activation, but also improve the stability by increasing the concentration of oxygen vacancies and inhibiting CO disproportionation.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000198/pdfft?md5=6893e813fccc0f99a6b759629cfb60ba&pid=1-s2.0-S2772834X24000198-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In-situ exsolved ultrafine Ni nanoparticles from CeZrNiO2 solid solution for efficient photothermal catalytic CO2 reduction by CH4\",\"authors\":\"Guanrui Ji ,&nbsp;Lei Ji ,&nbsp;Shaowen Wu ,&nbsp;Lingxin Meng ,&nbsp;Yuteng Jia ,&nbsp;Zhanning Liu ,&nbsp;Shihua Dong ,&nbsp;Jian Tian ,&nbsp;Yuanzhi Li\",\"doi\":\"10.1016/j.apmate.2024.100188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<sub>2</sub> reduction by CH<sub>4</sub> (CRM) to produce fuel is of great significance for solar energy storage and eliminating greenhouse gas. Herein, the catalyst of ultrafine Ni nanoparticles supported on CeZrNiO<sub>2</sub> solid solution (Ni@CZNO) was synthesized by the sol-gel method. High yield of H<sub>2</sub> and CO (58.0 and 69.8 ​mmol ​min<sup>−1</sup> ​g<sup>−1</sup>) and excellent durability (50 ​h) were achieved by photothermal catalytic CRM merely under focused light irradiation. Structural characterization and DFT calculations reveal that CZNO has rich oxygen vacancies that can adsorb and activate CO<sub>2</sub> to produce reactive oxygen species. Oxygen species are transferred to ultrafine Ni nanoparticles through the rich Ni-CZNO interface to accelerate carbon oxidation, thereby maintaining the excellent catalytic stability of the catalyst. Moreover, the experimental results reveal that light irradiation can not only enhance the photothermal catalytic CRM activity through photothermal conversion and molecular activation, but also improve the stability by increasing the concentration of oxygen vacancies and inhibiting CO disproportionation.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000198/pdfft?md5=6893e813fccc0f99a6b759629cfb60ba&pid=1-s2.0-S2772834X24000198-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用 CH4(CRM)还原 CO2 生成燃料对太阳能储存和消除温室气体具有重要意义。本文采用溶胶-凝胶法合成了以 CeZrNiO2 固溶体为支撑的超细镍纳米颗粒催化剂(Ni@CZNO)。在聚焦光照射下,仅通过光热催化 CRM 就获得了较高的 H2 和 CO 产率(分别为 58.0 和 69.8 mmol min-1 g-1)和优异的耐久性(50 h)。结构表征和 DFT 计算显示,CZNO 具有丰富的氧空位,可以吸附和活化 CO2,产生活性氧。氧物种通过富含 Ni-CZNO 的界面转移到超细镍纳米颗粒上,加速碳氧化,从而保持了催化剂优异的催化稳定性。此外,实验结果表明,光照射不仅能通过光热转化和分子活化提高光热催化 CRM 活性,还能通过增加氧空位浓度和抑制 CO歧化提高稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ exsolved ultrafine Ni nanoparticles from CeZrNiO2 solid solution for efficient photothermal catalytic CO2 reduction by CH4

In-situ exsolved ultrafine Ni nanoparticles from CeZrNiO2 solid solution for efficient photothermal catalytic CO2 reduction by CH4

CO2 reduction by CH4 (CRM) to produce fuel is of great significance for solar energy storage and eliminating greenhouse gas. Herein, the catalyst of ultrafine Ni nanoparticles supported on CeZrNiO2 solid solution (Ni@CZNO) was synthesized by the sol-gel method. High yield of H2 and CO (58.0 and 69.8 ​mmol ​min−1 ​g−1) and excellent durability (50 ​h) were achieved by photothermal catalytic CRM merely under focused light irradiation. Structural characterization and DFT calculations reveal that CZNO has rich oxygen vacancies that can adsorb and activate CO2 to produce reactive oxygen species. Oxygen species are transferred to ultrafine Ni nanoparticles through the rich Ni-CZNO interface to accelerate carbon oxidation, thereby maintaining the excellent catalytic stability of the catalyst. Moreover, the experimental results reveal that light irradiation can not only enhance the photothermal catalytic CRM activity through photothermal conversion and molecular activation, but also improve the stability by increasing the concentration of oxygen vacancies and inhibiting CO disproportionation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信