斐波那契素数,形式为 2 - k 及以上的素数

Pub Date : 2024-03-20 DOI:10.1016/j.jnt.2024.02.002
Jon Grantham , Andrew Granville
{"title":"斐波那契素数,形式为 2 - k 及以上的素数","authors":"Jon Grantham ,&nbsp;Andrew Granville","doi":"10.1016/j.jnt.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>We speculate on the distribution of primes in exponentially growing, linear recurrence sequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> in the integers. By tweaking a heuristic which is successfully used to predict the number of prime values of polynomials, we guess that either there are only finitely many primes <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, or else there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> (which we can give good approximations to) such that there are <span><math><mo>∼</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>log</mi><mo>⁡</mo><mi>N</mi></math></span> primes <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≤</mo><mi>N</mi></math></span>, as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We compare our conjecture to the limited amount of data that we can compile. One new feature is that the primes in our Euler product are not taken in order of their size, but rather in order of the size of the period of the <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibonacci primes, primes of the form 2n − k and beyond\",\"authors\":\"Jon Grantham ,&nbsp;Andrew Granville\",\"doi\":\"10.1016/j.jnt.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We speculate on the distribution of primes in exponentially growing, linear recurrence sequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> in the integers. By tweaking a heuristic which is successfully used to predict the number of prime values of polynomials, we guess that either there are only finitely many primes <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, or else there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> (which we can give good approximations to) such that there are <span><math><mo>∼</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>u</mi></mrow></msub><mi>log</mi><mo>⁡</mo><mi>N</mi></math></span> primes <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≤</mo><mi>N</mi></math></span>, as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. We compare our conjecture to the limited amount of data that we can compile. One new feature is that the primes in our Euler product are not taken in order of their size, but rather in order of the size of the period of the <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推测指数增长的整数线性递推序列 (un)n≥0 中素数的分布。通过调整一个成功用于预测多项式素数的启发式,我们猜测,要么只有有限个素数 un,要么存在一个常数 cu>0(我们可以给出很好的近似值),从而有 ∼culogN 个素数 un,n≤N,如 N→∞。我们将我们的猜想与有限的数据进行比较。一个新特点是,我们的欧拉积中的素数不是按大小顺序排列的,而是按 un(modp) 周期的大小顺序排列的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fibonacci primes, primes of the form 2n − k and beyond

We speculate on the distribution of primes in exponentially growing, linear recurrence sequences (un)n0 in the integers. By tweaking a heuristic which is successfully used to predict the number of prime values of polynomials, we guess that either there are only finitely many primes un, or else there exists a constant cu>0 (which we can give good approximations to) such that there are culogN primes un with nN, as N. We compare our conjecture to the limited amount of data that we can compile. One new feature is that the primes in our Euler product are not taken in order of their size, but rather in order of the size of the period of the un(modp).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信