将学习作为形态发生过程的抽象描述

G. M. Guazzo
{"title":"将学习作为形态发生过程的抽象描述","authors":"G. M. Guazzo","doi":"10.59324/ejtas.2024.2(2).09","DOIUrl":null,"url":null,"abstract":"This paper describes a mathematical framework for describing learning in terms of convergence to a stable equilibrium point of a Hebbian neural network. It implies that network dynamics can be approximated by a system of diffusion equations, which has stable equilibrium if a particular parameter is large enough. The learned state is identified with the stable equilibrium point. The model suggests that the magnitude of the eigenvalues associated with the system linearised about the fixed point should be directly related to the slope of an exponential learning curve. ","PeriodicalId":418878,"journal":{"name":"European Journal of Theoretical and Applied Sciences","volume":"30 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Abstract Description of Learning as a Morphogenetic Process\",\"authors\":\"G. M. Guazzo\",\"doi\":\"10.59324/ejtas.2024.2(2).09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a mathematical framework for describing learning in terms of convergence to a stable equilibrium point of a Hebbian neural network. It implies that network dynamics can be approximated by a system of diffusion equations, which has stable equilibrium if a particular parameter is large enough. The learned state is identified with the stable equilibrium point. The model suggests that the magnitude of the eigenvalues associated with the system linearised about the fixed point should be directly related to the slope of an exponential learning curve. \",\"PeriodicalId\":418878,\"journal\":{\"name\":\"European Journal of Theoretical and Applied Sciences\",\"volume\":\"30 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Theoretical and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59324/ejtas.2024.2(2).09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Theoretical and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59324/ejtas.2024.2(2).09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个数学框架,从收敛到海比神经网络稳定平衡点的角度来描述学习。这意味着网络动力学可以用一个扩散方程系统来近似,如果特定参数足够大,该系统就会有稳定的平衡点。学习状态与稳定平衡点相一致。该模型表明,与围绕定点线性化的系统相关的特征值大小应与指数学习曲线的斜率直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Abstract Description of Learning as a Morphogenetic Process
This paper describes a mathematical framework for describing learning in terms of convergence to a stable equilibrium point of a Hebbian neural network. It implies that network dynamics can be approximated by a system of diffusion equations, which has stable equilibrium if a particular parameter is large enough. The learned state is identified with the stable equilibrium point. The model suggests that the magnitude of the eigenvalues associated with the system linearised about the fixed point should be directly related to the slope of an exponential learning curve. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信