{"title":"使用羧酸无催化剂电化学合成富电子芴的 SNAr","authors":"","doi":"10.1016/j.esci.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, an electrochemically driven catalyst-free nucleophilic aromatic substitution (S<sub>N</sub>Ar) of electron-rich fluoroarenes with carboxylic acids as weak nucleophiles under mild conditions was reported. A series of highly valuable ester derivatives were obtained in a direct and rapid way. This transformation features commercially available reagents and an exceptionally broad substrate scope with good functional group tolerance, using cheap and abundant electrodes and completed within a short reaction time. Gram-scale synthesis and complex biorelevant compounds ligation further highlighted the potential utility of the methodology. The mechanistic investigations and density functional theory (DFT) calculations verified the feasibility of the proposed pathway of this transformation.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 5","pages":"Article 100255"},"PeriodicalIF":42.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst-free electrochemical SNAr of electron-rich fluoroarenes using carboxylic acids\",\"authors\":\"\",\"doi\":\"10.1016/j.esci.2024.100255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, an electrochemically driven catalyst-free nucleophilic aromatic substitution (S<sub>N</sub>Ar) of electron-rich fluoroarenes with carboxylic acids as weak nucleophiles under mild conditions was reported. A series of highly valuable ester derivatives were obtained in a direct and rapid way. This transformation features commercially available reagents and an exceptionally broad substrate scope with good functional group tolerance, using cheap and abundant electrodes and completed within a short reaction time. Gram-scale synthesis and complex biorelevant compounds ligation further highlighted the potential utility of the methodology. The mechanistic investigations and density functional theory (DFT) calculations verified the feasibility of the proposed pathway of this transformation.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 5\",\"pages\":\"Article 100255\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266714172400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Catalyst-free electrochemical SNAr of electron-rich fluoroarenes using carboxylic acids
Herein, an electrochemically driven catalyst-free nucleophilic aromatic substitution (SNAr) of electron-rich fluoroarenes with carboxylic acids as weak nucleophiles under mild conditions was reported. A series of highly valuable ester derivatives were obtained in a direct and rapid way. This transformation features commercially available reagents and an exceptionally broad substrate scope with good functional group tolerance, using cheap and abundant electrodes and completed within a short reaction time. Gram-scale synthesis and complex biorelevant compounds ligation further highlighted the potential utility of the methodology. The mechanistic investigations and density functional theory (DFT) calculations verified the feasibility of the proposed pathway of this transformation.