Shunhui Zhang , Xiang Lan , Hang Liu , Xuyang Zhang , Baihui Zhang , Zhikang Ao , Tian Zhang , Peng Chen , Xiangdong Yang , Fangping Ouyang , Zhengwei Zhang
{"title":"通过硫化 WSe2 生长的单层 WS2 中的缺陷","authors":"Shunhui Zhang , Xiang Lan , Hang Liu , Xuyang Zhang , Baihui Zhang , Zhikang Ao , Tian Zhang , Peng Chen , Xiangdong Yang , Fangping Ouyang , Zhengwei Zhang","doi":"10.1016/j.pnsc.2024.02.016","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of chalcogen atoms into other types of chalcogen atoms in transition metal dichalcogenides exhibits significant advantages in tuning the bandgaps and constructing lateral heterojunctions. However, despite atomic defects at the atomic scale were inevitably formed during conversion process, the construction of dislocations remains difficult. Here, we conducted in-situ sulfurization to achieve structural transformation from monolayer WSe<sub>2</sub> to WS<sub>2</sub> successfully. We probe these transformations at atomic scale using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and study structural defects of sulfurized-WS<sub>2</sub> by strain and displacement fields. We discovered that high-quality WSe<sub>2</sub> flakes were completely sulfurized while dislocations were successfully constructed, manifesting atomic surface roughness and structural disorders. Our work provides insights into designing and optimizing customized Transition metal dichalcogenides (TMDs) materials in controlled synthesis and defect engineering.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 323-328"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects in monolayer WS2 grown via sulfurization of WSe2\",\"authors\":\"Shunhui Zhang , Xiang Lan , Hang Liu , Xuyang Zhang , Baihui Zhang , Zhikang Ao , Tian Zhang , Peng Chen , Xiangdong Yang , Fangping Ouyang , Zhengwei Zhang\",\"doi\":\"10.1016/j.pnsc.2024.02.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conversion of chalcogen atoms into other types of chalcogen atoms in transition metal dichalcogenides exhibits significant advantages in tuning the bandgaps and constructing lateral heterojunctions. However, despite atomic defects at the atomic scale were inevitably formed during conversion process, the construction of dislocations remains difficult. Here, we conducted in-situ sulfurization to achieve structural transformation from monolayer WSe<sub>2</sub> to WS<sub>2</sub> successfully. We probe these transformations at atomic scale using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and study structural defects of sulfurized-WS<sub>2</sub> by strain and displacement fields. We discovered that high-quality WSe<sub>2</sub> flakes were completely sulfurized while dislocations were successfully constructed, manifesting atomic surface roughness and structural disorders. Our work provides insights into designing and optimizing customized Transition metal dichalcogenides (TMDs) materials in controlled synthesis and defect engineering.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 2\",\"pages\":\"Pages 323-328\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124000601\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000601","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Defects in monolayer WS2 grown via sulfurization of WSe2
The conversion of chalcogen atoms into other types of chalcogen atoms in transition metal dichalcogenides exhibits significant advantages in tuning the bandgaps and constructing lateral heterojunctions. However, despite atomic defects at the atomic scale were inevitably formed during conversion process, the construction of dislocations remains difficult. Here, we conducted in-situ sulfurization to achieve structural transformation from monolayer WSe2 to WS2 successfully. We probe these transformations at atomic scale using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and study structural defects of sulfurized-WS2 by strain and displacement fields. We discovered that high-quality WSe2 flakes were completely sulfurized while dislocations were successfully constructed, manifesting atomic surface roughness and structural disorders. Our work provides insights into designing and optimizing customized Transition metal dichalcogenides (TMDs) materials in controlled synthesis and defect engineering.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.