有傅里叶系数的除数函数的移位卷积和

Pub Date : 2024-03-20 DOI:10.1016/j.jnt.2024.02.014
Miao Lou
{"title":"有傅里叶系数的除数函数的移位卷积和","authors":"Miao Lou","doi":"10.1016/j.jnt.2024.02.014","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> be a holomorphic cusp form of weight <em>κ</em> for the full modular group <span><math><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Denote its <em>n</em>-th normalized Fourier coefficient by <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote that <em>k</em>-th divisor function with <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span>. In this paper, we consider the shifted convolution sum<span><span><span><math><munder><mo>∑</mo><mrow><mi>n</mi><mo>≤</mo><mi>X</mi></mrow></munder><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mi>h</mi><mo>)</mo><mo>.</mo></math></span></span></span> We succeed in obtaining a non-trivial upper bound, which is uniform in the shift parameter <em>h</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted convolution sums of divisor functions with Fourier coefficients\",\"authors\":\"Miao Lou\",\"doi\":\"10.1016/j.jnt.2024.02.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> be a holomorphic cusp form of weight <em>κ</em> for the full modular group <span><math><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Denote its <em>n</em>-th normalized Fourier coefficient by <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote that <em>k</em>-th divisor function with <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span>. In this paper, we consider the shifted convolution sum<span><span><span><math><munder><mo>∑</mo><mrow><mi>n</mi><mo>≤</mo><mi>X</mi></mrow></munder><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mi>h</mi><mo>)</mo><mo>.</mo></math></span></span></span> We succeed in obtaining a non-trivial upper bound, which is uniform in the shift parameter <em>h</em>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 f(z) 是全模态群 SL2(Z) 权重为 κ 的全形尖顶形式。用 λf(n) 表示其 n 次归一化傅里叶系数。让 τk(n) 表示 k≥4 的第 k 个除数函数。本文考虑的是移位卷积和∑n≤Xτk(n)λf(n+h)。我们成功地得到了一个非微妙的上界,它与移位参数 h 一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Shifted convolution sums of divisor functions with Fourier coefficients

Let f(z) be a holomorphic cusp form of weight κ for the full modular group SL2(Z). Denote its n-th normalized Fourier coefficient by λf(n). Let τk(n) denote that k-th divisor function with k4. In this paper, we consider the shifted convolution sumnXτk(n)λf(n+h). We succeed in obtaining a non-trivial upper bound, which is uniform in the shift parameter h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信