改善金属氧化物异质结薄膜晶体管载流子迁移率和稳定性的阳离子掺杂策略

Boyeon Park , San Nam , Youngjin Kang , Seong-Pil Jeon , Jeong-Wan Jo , Sung Kyu Park , Yong-Hoon Kim
{"title":"改善金属氧化物异质结薄膜晶体管载流子迁移率和稳定性的阳离子掺杂策略","authors":"Boyeon Park ,&nbsp;San Nam ,&nbsp;Youngjin Kang ,&nbsp;Seong-Pil Jeon ,&nbsp;Jeong-Wan Jo ,&nbsp;Sung Kyu Park ,&nbsp;Yong-Hoon Kim","doi":"10.1016/j.mtelec.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><p>The heterojunction channel architecture has emerged as a viable solution to enhance the performance of metal-oxide thin-film transistors (TFTs), addressing the performance limitations of single-channel counterparts. However, carrier mobility enhancement through a channel thickness design often encounters significant challenges such as the negative threshold voltage (V<sub>th</sub>) shift. In this study, we present a cation doping strategy, designed to regulate V<sub>th</sub> shift while simultaneously boosting carrier mobility in zinc-tin-oxide (ZTO)-based heterojunction TFTs. A comprehensive investigation of ZTO-based semiconductors was conducted to explore the impact of cation doping on the energy band structure and to find an optimal heterojunction channel structure for high carrier mobility and stability. The resulting ZTO/Ti-doped ZTO (Ti:ZTO) heterojunction TFTs demonstrated a field-effect mobility of 39.7 cm<sup>2</sup>/Vs, surpassing the performance of ZTO TFTs (16.1 cm<sup>2</sup>/Vs), with a minimal change in the V<sub>th</sub>. Furthermore, the ZTO/Ti:ZTO TFTs exhibited enhanced bias-stress stability compared to the ZTO TFTs. We attribute the improved mobility and stability to the electron accumulation near the oxide channel heterointerface facilitated by band bending and defect passivation effect arising from the Ti:ZTO back-channel layer, respectively.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000020/pdfft?md5=15f60ff0a0662214a0774d76a56e938b&pid=1-s2.0-S2772949424000020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors\",\"authors\":\"Boyeon Park ,&nbsp;San Nam ,&nbsp;Youngjin Kang ,&nbsp;Seong-Pil Jeon ,&nbsp;Jeong-Wan Jo ,&nbsp;Sung Kyu Park ,&nbsp;Yong-Hoon Kim\",\"doi\":\"10.1016/j.mtelec.2024.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heterojunction channel architecture has emerged as a viable solution to enhance the performance of metal-oxide thin-film transistors (TFTs), addressing the performance limitations of single-channel counterparts. However, carrier mobility enhancement through a channel thickness design often encounters significant challenges such as the negative threshold voltage (V<sub>th</sub>) shift. In this study, we present a cation doping strategy, designed to regulate V<sub>th</sub> shift while simultaneously boosting carrier mobility in zinc-tin-oxide (ZTO)-based heterojunction TFTs. A comprehensive investigation of ZTO-based semiconductors was conducted to explore the impact of cation doping on the energy band structure and to find an optimal heterojunction channel structure for high carrier mobility and stability. The resulting ZTO/Ti-doped ZTO (Ti:ZTO) heterojunction TFTs demonstrated a field-effect mobility of 39.7 cm<sup>2</sup>/Vs, surpassing the performance of ZTO TFTs (16.1 cm<sup>2</sup>/Vs), with a minimal change in the V<sub>th</sub>. Furthermore, the ZTO/Ti:ZTO TFTs exhibited enhanced bias-stress stability compared to the ZTO TFTs. We attribute the improved mobility and stability to the electron accumulation near the oxide channel heterointerface facilitated by band bending and defect passivation effect arising from the Ti:ZTO back-channel layer, respectively.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000020/pdfft?md5=15f60ff0a0662214a0774d76a56e938b&pid=1-s2.0-S2772949424000020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949424000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异质结沟道结构已成为提高金属氧化物薄膜晶体管(TFT)性能的一种可行解决方案,解决了单沟道对应器件的性能限制问题。然而,通过沟道厚度设计提高载流子迁移率往往会遇到重大挑战,例如负阈值电压(Vth)偏移。在本研究中,我们提出了一种阳离子掺杂策略,旨在调节阈值电压偏移,同时提高锌锡氧化物(ZTO)基异质结 TFT 的载流子迁移率。为了探索阳离子掺杂对能带结构的影响,并找到实现高载流子迁移率和稳定性的最佳异质结沟道结构,我们对基于 ZTO 的半导体进行了全面研究。结果表明,ZTO/钛掺杂 ZTO(Ti:ZTO)异质结 TFT 的场效应迁移率达到 39.7 cm2/Vs,超过了 ZTO TFT 的性能(16.1 cm2/Vs),且 Vth 变化极小。此外,与 ZTO TFT 相比,ZTO/Ti:ZTO TFT 表现出更高的偏压稳定性。我们将迁移率和稳定性的提高分别归因于 Ti:ZTO 背沟道层产生的带弯曲和缺陷钝化效应促进了氧化沟道异质界面附近的电子积聚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors

The heterojunction channel architecture has emerged as a viable solution to enhance the performance of metal-oxide thin-film transistors (TFTs), addressing the performance limitations of single-channel counterparts. However, carrier mobility enhancement through a channel thickness design often encounters significant challenges such as the negative threshold voltage (Vth) shift. In this study, we present a cation doping strategy, designed to regulate Vth shift while simultaneously boosting carrier mobility in zinc-tin-oxide (ZTO)-based heterojunction TFTs. A comprehensive investigation of ZTO-based semiconductors was conducted to explore the impact of cation doping on the energy band structure and to find an optimal heterojunction channel structure for high carrier mobility and stability. The resulting ZTO/Ti-doped ZTO (Ti:ZTO) heterojunction TFTs demonstrated a field-effect mobility of 39.7 cm2/Vs, surpassing the performance of ZTO TFTs (16.1 cm2/Vs), with a minimal change in the Vth. Furthermore, the ZTO/Ti:ZTO TFTs exhibited enhanced bias-stress stability compared to the ZTO TFTs. We attribute the improved mobility and stability to the electron accumulation near the oxide channel heterointerface facilitated by band bending and defect passivation effect arising from the Ti:ZTO back-channel layer, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信