{"title":"中国大陆不同省份利用风能和太阳能生产绿色氢气的平准化成本和潜力","authors":"Jinping Man, Tieju Ma, Yadong Yu, Hongtao Ren","doi":"10.1063/5.0183511","DOIUrl":null,"url":null,"abstract":"Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China\",\"authors\":\"Jinping Man, Tieju Ma, Yadong Yu, Hongtao Ren\",\"doi\":\"10.1063/5.0183511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0183511\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0183511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China
Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy