{"title":"莫特金属-绝缘体转变中的临界杂质密度,在 n(p)-Type Degenerate 中获得","authors":"Huynh Van Cong","doi":"10.59324/ejtas.2024.2(2).12","DOIUrl":null,"url":null,"abstract":"By basing on the same physical model and treatment method, as used in our recent works (Van Cong, 2024; 2023; 2023), we investigate the critical impurity density in the metal-insulator transition (MIT), obtained in the n(p)-type degenerate Si1−xGex- crystalline alloy, 0≤x≤1, and also applied to determine the optical band gap, being due to the effects of the size of donor (acceptor) d(a)-radius, rd(a), the x-Ge concentration, the temperature T, and finally the high d(a)-density, N, assuming that all the impurities are ionized even at T=0 K. In such the n(p)-type degenerate Si1−xGex- crystalline alloy, we will determine: (i)-the critical impurity density ","PeriodicalId":418878,"journal":{"name":"European Journal of Theoretical and Applied Sciences","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Impurity Density in the Mott Metal-Insulator Transition, obtained in the n(p)-Type Degenerate\",\"authors\":\"Huynh Van Cong\",\"doi\":\"10.59324/ejtas.2024.2(2).12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By basing on the same physical model and treatment method, as used in our recent works (Van Cong, 2024; 2023; 2023), we investigate the critical impurity density in the metal-insulator transition (MIT), obtained in the n(p)-type degenerate Si1−xGex- crystalline alloy, 0≤x≤1, and also applied to determine the optical band gap, being due to the effects of the size of donor (acceptor) d(a)-radius, rd(a), the x-Ge concentration, the temperature T, and finally the high d(a)-density, N, assuming that all the impurities are ionized even at T=0 K. In such the n(p)-type degenerate Si1−xGex- crystalline alloy, we will determine: (i)-the critical impurity density \",\"PeriodicalId\":418878,\"journal\":{\"name\":\"European Journal of Theoretical and Applied Sciences\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Theoretical and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59324/ejtas.2024.2(2).12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Theoretical and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59324/ejtas.2024.2(2).12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Impurity Density in the Mott Metal-Insulator Transition, obtained in the n(p)-Type Degenerate
By basing on the same physical model and treatment method, as used in our recent works (Van Cong, 2024; 2023; 2023), we investigate the critical impurity density in the metal-insulator transition (MIT), obtained in the n(p)-type degenerate Si1−xGex- crystalline alloy, 0≤x≤1, and also applied to determine the optical band gap, being due to the effects of the size of donor (acceptor) d(a)-radius, rd(a), the x-Ge concentration, the temperature T, and finally the high d(a)-density, N, assuming that all the impurities are ionized even at T=0 K. In such the n(p)-type degenerate Si1−xGex- crystalline alloy, we will determine: (i)-the critical impurity density