Xiangwei Liu , Tiedong Sun , Yuan Sun , Alina Manshina , Lei Wang
{"title":"聚氧化金属基过氧化物酶样纳米酶","authors":"Xiangwei Liu , Tiedong Sun , Yuan Sun , Alina Manshina , Lei Wang","doi":"10.1016/j.nanoms.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Nanozymes, as a new generation of artificial enzymes, exhibit similar chemical properties, catalytic efficiency, and reaction kinetics to natural enzymes. Nanozymes can offer several advantages over natural enzymes, including the decreased cost, the increased stability, and the enhanced catalytic activity. These advantages have positioned nanozymes as a research focus in the fields of chemistry, materials and biomedicine. Polyoxometalates (POMs) and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics. Given this, this review aims to provide a comprehensive overview of the POM-based nanozymes, covering their structural categorization, evolution, and various applications over the past decade. The dynamic nature of this field would promise the intriguing challenges and opportunities in the future. Additionally, we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research. This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes, thereby advancing the fields of biochemistry and materials science.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 1","pages":"Pages 24-48"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyoxometalate-based peroxidase-like nanozymes\",\"authors\":\"Xiangwei Liu , Tiedong Sun , Yuan Sun , Alina Manshina , Lei Wang\",\"doi\":\"10.1016/j.nanoms.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanozymes, as a new generation of artificial enzymes, exhibit similar chemical properties, catalytic efficiency, and reaction kinetics to natural enzymes. Nanozymes can offer several advantages over natural enzymes, including the decreased cost, the increased stability, and the enhanced catalytic activity. These advantages have positioned nanozymes as a research focus in the fields of chemistry, materials and biomedicine. Polyoxometalates (POMs) and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics. Given this, this review aims to provide a comprehensive overview of the POM-based nanozymes, covering their structural categorization, evolution, and various applications over the past decade. The dynamic nature of this field would promise the intriguing challenges and opportunities in the future. Additionally, we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research. This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes, thereby advancing the fields of biochemistry and materials science.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 1\",\"pages\":\"Pages 24-48\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000278\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000278","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Nanozymes, as a new generation of artificial enzymes, exhibit similar chemical properties, catalytic efficiency, and reaction kinetics to natural enzymes. Nanozymes can offer several advantages over natural enzymes, including the decreased cost, the increased stability, and the enhanced catalytic activity. These advantages have positioned nanozymes as a research focus in the fields of chemistry, materials and biomedicine. Polyoxometalates (POMs) and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics. Given this, this review aims to provide a comprehensive overview of the POM-based nanozymes, covering their structural categorization, evolution, and various applications over the past decade. The dynamic nature of this field would promise the intriguing challenges and opportunities in the future. Additionally, we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research. This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes, thereby advancing the fields of biochemistry and materials science.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.