基于 MoS2 支持的 (ZnNiCoFeY)xOy 高熵氧化物的电催化整体水分离技术

Q1 Social Sciences
Sumayya C. Pathan , Jasmin S. Shaikh , Navajsharif S. Shaikh , Victor Márquez , Meena Rittiruam , Tinnakorn Saelee , Patcharaporn Khajondetchairit , Sawanta S. Mali , Jyoti V. Patil , Chang Kook Hong , Piyasan Praserthdam , Supareak Praserthdam
{"title":"基于 MoS2 支持的 (ZnNiCoFeY)xOy 高熵氧化物的电催化整体水分离技术","authors":"Sumayya C. Pathan ,&nbsp;Jasmin S. Shaikh ,&nbsp;Navajsharif S. Shaikh ,&nbsp;Victor Márquez ,&nbsp;Meena Rittiruam ,&nbsp;Tinnakorn Saelee ,&nbsp;Patcharaporn Khajondetchairit ,&nbsp;Sawanta S. Mali ,&nbsp;Jyoti V. Patil ,&nbsp;Chang Kook Hong ,&nbsp;Piyasan Praserthdam ,&nbsp;Supareak Praserthdam","doi":"10.1016/j.sajce.2024.03.012","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen energy is a sustainable and clean source that can meet global energy demands without adverse environmental impacts. High-entropy oxides (HEOs), multielement (5 or more) oxides with an equiatomic or near-equatomic elemental composition, offer a novel approach to designing bifunctional electrocatalysts. This work explores (ZnNiCoFeY)<sub>x</sub>O<sub>y</sub> over MoS<sub>2</sub> as a bifunctional electrocatalyst (HEO–MoS<sub>2</sub>) in an alkaline medium. The HEO was synthesized using a combustion process and loaded over MoS<sub>2</sub> using an ultrasonic method. The synthesized HEO over MoS2 exhibits excellent performance, including long-term stability for over 24 h, an overpotential of 214 mV vs the reversible hydrogen electrode (RHE) for the hydrogen evolution reaction (HER), and 308 mV for the oxygen evolution reaction (OER) at 10 mA cm<sup>−2</sup>. This bifunctional electrocatalyst exhibits low overpotential for both the HER and the OER at high current densities. Additionally, HEO–MoS<sub>2</sub> demonstrates smaller solution and charge transfer resistance values. The electrolyzer was assembled using bifunctional HEO–MoS<sub>2</sub> electrodes for overall water splitting. These electrodes exhibited a low cell voltage of 1.65 V at 10 mA cm<sup>−2</sup>. The novel electrocatalyst was fabricated using a facile and scalable method that appeals to industrial applications.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"48 ","pages":"Pages 425-435"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000404/pdfft?md5=6fad84857c0cd0630822d8ad6506f4cf&pid=1-s2.0-S1026918524000404-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic overall water splitting based on (ZnNiCoFeY)xOy high-entropy oxide supported on MoS2\",\"authors\":\"Sumayya C. Pathan ,&nbsp;Jasmin S. Shaikh ,&nbsp;Navajsharif S. Shaikh ,&nbsp;Victor Márquez ,&nbsp;Meena Rittiruam ,&nbsp;Tinnakorn Saelee ,&nbsp;Patcharaporn Khajondetchairit ,&nbsp;Sawanta S. Mali ,&nbsp;Jyoti V. Patil ,&nbsp;Chang Kook Hong ,&nbsp;Piyasan Praserthdam ,&nbsp;Supareak Praserthdam\",\"doi\":\"10.1016/j.sajce.2024.03.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen energy is a sustainable and clean source that can meet global energy demands without adverse environmental impacts. High-entropy oxides (HEOs), multielement (5 or more) oxides with an equiatomic or near-equatomic elemental composition, offer a novel approach to designing bifunctional electrocatalysts. This work explores (ZnNiCoFeY)<sub>x</sub>O<sub>y</sub> over MoS<sub>2</sub> as a bifunctional electrocatalyst (HEO–MoS<sub>2</sub>) in an alkaline medium. The HEO was synthesized using a combustion process and loaded over MoS<sub>2</sub> using an ultrasonic method. The synthesized HEO over MoS2 exhibits excellent performance, including long-term stability for over 24 h, an overpotential of 214 mV vs the reversible hydrogen electrode (RHE) for the hydrogen evolution reaction (HER), and 308 mV for the oxygen evolution reaction (OER) at 10 mA cm<sup>−2</sup>. This bifunctional electrocatalyst exhibits low overpotential for both the HER and the OER at high current densities. Additionally, HEO–MoS<sub>2</sub> demonstrates smaller solution and charge transfer resistance values. The electrolyzer was assembled using bifunctional HEO–MoS<sub>2</sub> electrodes for overall water splitting. These electrodes exhibited a low cell voltage of 1.65 V at 10 mA cm<sup>−2</sup>. The novel electrocatalyst was fabricated using a facile and scalable method that appeals to industrial applications.</p></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Pages 425-435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1026918524000404/pdfft?md5=6fad84857c0cd0630822d8ad6506f4cf&pid=1-s2.0-S1026918524000404-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918524000404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

氢能是一种可持续的清洁能源,可满足全球能源需求,且不会对环境造成不利影响。高熵氧化物(HEOs)是具有等原子或接近等原子元素组成的多元素(5 种或更多)氧化物,为设计双功能电催化剂提供了一种新方法。本研究探讨了在碱性介质中将 MoS2 上的 (ZnNiCoFeY)xOy 作为双功能电催化剂(HEO-MoS2)。HEO 采用燃烧工艺合成,并通过超声波方法负载在 MoS2 上。在 MoS2 上合成的 HEO 表现出优异的性能,包括超过 24 小时的长期稳定性,在 10 mA cm-2 的条件下,氢进化反应(HER)与可逆氢电极(RHE)的过电位为 214 mV,氧进化反应(OER)的过电位为 308 mV。在高电流密度下,这种双功能电催化剂在氢进化反应和氧进化反应中都表现出较低的过电位。此外,HEO-MoS2 的溶液和电荷转移电阻值较小。使用双功能 HEO-MoS2 电极组装的电解槽可实现整体水分离。这些电极在 10 mA cm-2 时的电池电压低至 1.65 V。这种新型电催化剂的制造方法简便且可扩展,非常适合工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrocatalytic overall water splitting based on (ZnNiCoFeY)xOy high-entropy oxide supported on MoS2

Electrocatalytic overall water splitting based on (ZnNiCoFeY)xOy high-entropy oxide supported on MoS2

Hydrogen energy is a sustainable and clean source that can meet global energy demands without adverse environmental impacts. High-entropy oxides (HEOs), multielement (5 or more) oxides with an equiatomic or near-equatomic elemental composition, offer a novel approach to designing bifunctional electrocatalysts. This work explores (ZnNiCoFeY)xOy over MoS2 as a bifunctional electrocatalyst (HEO–MoS2) in an alkaline medium. The HEO was synthesized using a combustion process and loaded over MoS2 using an ultrasonic method. The synthesized HEO over MoS2 exhibits excellent performance, including long-term stability for over 24 h, an overpotential of 214 mV vs the reversible hydrogen electrode (RHE) for the hydrogen evolution reaction (HER), and 308 mV for the oxygen evolution reaction (OER) at 10 mA cm−2. This bifunctional electrocatalyst exhibits low overpotential for both the HER and the OER at high current densities. Additionally, HEO–MoS2 demonstrates smaller solution and charge transfer resistance values. The electrolyzer was assembled using bifunctional HEO–MoS2 electrodes for overall water splitting. These electrodes exhibited a low cell voltage of 1.65 V at 10 mA cm−2. The novel electrocatalyst was fabricated using a facile and scalable method that appeals to industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信