{"title":"南极洲东部英格丽德-克里斯滕森海岸异常地表融化的驱动因素","authors":"E.M. Gayathri , C.M. Laluraj","doi":"10.1016/j.polar.2024.101069","DOIUrl":null,"url":null,"abstract":"<div><p>Antarctica contains 90% of the Earth's ice; if it melts, it can significantly contribute to the rise in global sea levels. Over Antarctica, short-term atmospheric warming events have led to significant surface melt in summer. Understanding the conditions of such warming events and subsequent surface melt is highly prioritized in Polar Research. The austral summer of 2016-17 witnessed the largest melt duration of the 21<sup>st</sup> century over Ingrid Christensen Coast (ICC), East Antarctica. Being situated on the grounded ice near four research stations, understanding the melt over the region has both scientific and operational importance. Here, we investigate the drivers of four major melt events identified over ICC for the austral summer of 2016-17 using the reanalysis dataset, ERA5. The first melt event, coinciding with the season's highest air temperature, was triggered by high turbulent heat flux from strong katabatic winds, while the rest of the events were triggered by low-level, liquid cloud-induced longwave radiation. During the melt events, anomalous high pressure ridges were present over the continent causing low pressure systems to remain stationary for an extended period and direct warm, moist air towards the ICC, facilitating melting. The present study observed melting occurring above the grounding zone, and if such melting extends to a larger scale beyond ice shelves, it could raise significant concerns regarding the hydrodynamics and stability of ice sheets in the future.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"40 ","pages":"Article 101069"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivers of anomalous surface melting over Ingrid Christensen Coast, East Antarctica\",\"authors\":\"E.M. Gayathri , C.M. Laluraj\",\"doi\":\"10.1016/j.polar.2024.101069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antarctica contains 90% of the Earth's ice; if it melts, it can significantly contribute to the rise in global sea levels. Over Antarctica, short-term atmospheric warming events have led to significant surface melt in summer. Understanding the conditions of such warming events and subsequent surface melt is highly prioritized in Polar Research. The austral summer of 2016-17 witnessed the largest melt duration of the 21<sup>st</sup> century over Ingrid Christensen Coast (ICC), East Antarctica. Being situated on the grounded ice near four research stations, understanding the melt over the region has both scientific and operational importance. Here, we investigate the drivers of four major melt events identified over ICC for the austral summer of 2016-17 using the reanalysis dataset, ERA5. The first melt event, coinciding with the season's highest air temperature, was triggered by high turbulent heat flux from strong katabatic winds, while the rest of the events were triggered by low-level, liquid cloud-induced longwave radiation. During the melt events, anomalous high pressure ridges were present over the continent causing low pressure systems to remain stationary for an extended period and direct warm, moist air towards the ICC, facilitating melting. The present study observed melting occurring above the grounding zone, and if such melting extends to a larger scale beyond ice shelves, it could raise significant concerns regarding the hydrodynamics and stability of ice sheets in the future.</p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"40 \",\"pages\":\"Article 101069\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965224000380\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000380","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Drivers of anomalous surface melting over Ingrid Christensen Coast, East Antarctica
Antarctica contains 90% of the Earth's ice; if it melts, it can significantly contribute to the rise in global sea levels. Over Antarctica, short-term atmospheric warming events have led to significant surface melt in summer. Understanding the conditions of such warming events and subsequent surface melt is highly prioritized in Polar Research. The austral summer of 2016-17 witnessed the largest melt duration of the 21st century over Ingrid Christensen Coast (ICC), East Antarctica. Being situated on the grounded ice near four research stations, understanding the melt over the region has both scientific and operational importance. Here, we investigate the drivers of four major melt events identified over ICC for the austral summer of 2016-17 using the reanalysis dataset, ERA5. The first melt event, coinciding with the season's highest air temperature, was triggered by high turbulent heat flux from strong katabatic winds, while the rest of the events were triggered by low-level, liquid cloud-induced longwave radiation. During the melt events, anomalous high pressure ridges were present over the continent causing low pressure systems to remain stationary for an extended period and direct warm, moist air towards the ICC, facilitating melting. The present study observed melting occurring above the grounding zone, and if such melting extends to a larger scale beyond ice shelves, it could raise significant concerns regarding the hydrodynamics and stability of ice sheets in the future.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.