{"title":"与残差类环单位群最大间隙有关的零和问题","authors":"Xiao Jiang, Wenkai Yang","doi":"10.1016/j.jnt.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>S</em> be a sequence over a finite abelian group <em>G</em> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> be the times that <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> occurs in <em>S</em>. A sequence <em>S</em> over <em>G</em> is called weak-regular if <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≤</mo><mi>ord</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. Denote by <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the smallest integer <em>t</em> such that every weak-regular sequence <em>S</em> over <em>G</em> of length <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> has a nonempty zero-sum subsequence <em>T</em> of <em>S</em> satisfying <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> for some <span><math><mi>g</mi><mo>|</mo><mi>S</mi></math></span>. <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has been formulated by Gao et al. very recently to study zero-sum problems in a unify way and determined only for cyclic groups of prime-power order and some other very special groups. As for general cyclic groups <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, they gave that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>3</mn><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span></p><p>In this paper, we first study the max gap of the unit group of the residue class ring and give an upper bound of it. Then we prove that there is always an integer <span><math><mi>a</mi><mo>∈</mo><mo>[</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> such that <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2227</mn></math></span>. Finally, we improve the result of Gao et al. by showing that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span></span></span> for any cyclic group <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, in which for each equality, there are infinitely many <em>n</em> making it hold. And a computing result prefigures that <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has not been determined only for very few cyclic groups <em>G</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zero-sum problem related to the max gap of the unit group of the residue class ring\",\"authors\":\"Xiao Jiang, Wenkai Yang\",\"doi\":\"10.1016/j.jnt.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>S</em> be a sequence over a finite abelian group <em>G</em> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> be the times that <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> occurs in <em>S</em>. A sequence <em>S</em> over <em>G</em> is called weak-regular if <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≤</mo><mi>ord</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. Denote by <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the smallest integer <em>t</em> such that every weak-regular sequence <em>S</em> over <em>G</em> of length <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> has a nonempty zero-sum subsequence <em>T</em> of <em>S</em> satisfying <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> for some <span><math><mi>g</mi><mo>|</mo><mi>S</mi></math></span>. <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has been formulated by Gao et al. very recently to study zero-sum problems in a unify way and determined only for cyclic groups of prime-power order and some other very special groups. As for general cyclic groups <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, they gave that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>3</mn><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span></p><p>In this paper, we first study the max gap of the unit group of the residue class ring and give an upper bound of it. Then we prove that there is always an integer <span><math><mi>a</mi><mo>∈</mo><mo>[</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> such that <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2227</mn></math></span>. Finally, we improve the result of Gao et al. by showing that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span></span></span> for any cyclic group <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, in which for each equality, there are infinitely many <em>n</em> making it hold. And a computing result prefigures that <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has not been determined only for very few cyclic groups <em>G</em>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 S 是有限无边群 G 上的序列,vg(S) 是 g∈G 在 S 中出现的次数。如果对每个 g∈G 来说,vg(S)≤ord(g),则 G 上的序列 S 称为弱规则序列。用 N(G) 表示最小整数 t,使得长度为 |S|≥t 的 G 上的每个弱规则序列 S 对于某个 g|S 都有一个满足 vg(T)=vg(S) 的 S 的非空零和子序列 T。N(G)是高晓松等人最近为了统一研究零和问题而提出的,它只适用于素数幂级数的循环群和其他一些非常特殊的群。对于一般的循环群 G=Cn,他们给出了2n-⌈3n⌉+1≤N(G)≤2n-⌈2n+1⌉+1。然后,我们证明在 n≥2227 时,总有一个整数 a∈[n12,n12+n14]使得 gcd(a,n)=1。最后,我们通过证明 2n-⌈2n+1⌉≤N(G)≤2n-⌈2n+1⌉+1 来改进 Gao 等人的结果,对于任何 n≥3 的循环群 G=Cn,其中每个等式都有无穷多个 n 使其成立。而一个计算结果预示,N(G)并不是只对极少数的循环群 G 才确定的。
A zero-sum problem related to the max gap of the unit group of the residue class ring
Let S be a sequence over a finite abelian group G and be the times that occurs in S. A sequence S over G is called weak-regular if for every . Denote by the smallest integer t such that every weak-regular sequence S over G of length has a nonempty zero-sum subsequence T of S satisfying for some . has been formulated by Gao et al. very recently to study zero-sum problems in a unify way and determined only for cyclic groups of prime-power order and some other very special groups. As for general cyclic groups , they gave that
In this paper, we first study the max gap of the unit group of the residue class ring and give an upper bound of it. Then we prove that there is always an integer such that for . Finally, we improve the result of Gao et al. by showing that for any cyclic group with , in which for each equality, there are infinitely many n making it hold. And a computing result prefigures that has not been determined only for very few cyclic groups G.