Xinli Zhang , Yuchen Chen , Lailin Hu , Yiwei Bao , Yun-Fang Tu , Gwo-Jen Hwang
{"title":"基于隐喻的机器人编程方法,促进幼儿的计算思维和积极的学习行为","authors":"Xinli Zhang , Yuchen Chen , Lailin Hu , Yiwei Bao , Yun-Fang Tu , Gwo-Jen Hwang","doi":"10.1016/j.compedu.2024.105039","DOIUrl":null,"url":null,"abstract":"<div><p>In the artificial intelligence age, cultivating young children's computational thinking (CT) has sparked tremendous attention. Programmable robotics is a developmental-appropriate and screen-free means that provides young children with great opportunities to learn programming and develop CT. However, it is reported that young children might have difficulties learning abstract CT concepts. As a helpful pedagogical facilitator, metaphors can help turn abstract concepts into more concrete and clear concepts that learners are familiar with. Therefore, this research proposed a metaphor-based robot programming (MRP) approach and explored its impact on young children's CT and behavioral patterns. A total of 118 children aged 5–6 were recruited in this experiment with two conditions: the experimental group adopted the metaphor-based robot programming (MRP) approach while the control group used the conventional robot programming (CRP) approach. Results revealed that children who adopted the MRP approach outperformed children who adopted the CRP approach on CT. In addition, behavioral analysis indicated that the proposed MRP approach could facilitate children's superior learning performance and more positive learning behaviors, so as to help them achieve learning objectives. Accordingly, this study can provide insightful guidance and inspiration for future research on effective programming teaching and CT development for young children.</p></div>","PeriodicalId":10568,"journal":{"name":"Computers & Education","volume":"215 ","pages":"Article 105039"},"PeriodicalIF":8.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metaphor-based robot programming approach to facilitating young children’s computational thinking and positive learning behaviors\",\"authors\":\"Xinli Zhang , Yuchen Chen , Lailin Hu , Yiwei Bao , Yun-Fang Tu , Gwo-Jen Hwang\",\"doi\":\"10.1016/j.compedu.2024.105039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the artificial intelligence age, cultivating young children's computational thinking (CT) has sparked tremendous attention. Programmable robotics is a developmental-appropriate and screen-free means that provides young children with great opportunities to learn programming and develop CT. However, it is reported that young children might have difficulties learning abstract CT concepts. As a helpful pedagogical facilitator, metaphors can help turn abstract concepts into more concrete and clear concepts that learners are familiar with. Therefore, this research proposed a metaphor-based robot programming (MRP) approach and explored its impact on young children's CT and behavioral patterns. A total of 118 children aged 5–6 were recruited in this experiment with two conditions: the experimental group adopted the metaphor-based robot programming (MRP) approach while the control group used the conventional robot programming (CRP) approach. Results revealed that children who adopted the MRP approach outperformed children who adopted the CRP approach on CT. In addition, behavioral analysis indicated that the proposed MRP approach could facilitate children's superior learning performance and more positive learning behaviors, so as to help them achieve learning objectives. Accordingly, this study can provide insightful guidance and inspiration for future research on effective programming teaching and CT development for young children.</p></div>\",\"PeriodicalId\":10568,\"journal\":{\"name\":\"Computers & Education\",\"volume\":\"215 \",\"pages\":\"Article 105039\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360131524000538\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Education","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360131524000538","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A metaphor-based robot programming approach to facilitating young children’s computational thinking and positive learning behaviors
In the artificial intelligence age, cultivating young children's computational thinking (CT) has sparked tremendous attention. Programmable robotics is a developmental-appropriate and screen-free means that provides young children with great opportunities to learn programming and develop CT. However, it is reported that young children might have difficulties learning abstract CT concepts. As a helpful pedagogical facilitator, metaphors can help turn abstract concepts into more concrete and clear concepts that learners are familiar with. Therefore, this research proposed a metaphor-based robot programming (MRP) approach and explored its impact on young children's CT and behavioral patterns. A total of 118 children aged 5–6 were recruited in this experiment with two conditions: the experimental group adopted the metaphor-based robot programming (MRP) approach while the control group used the conventional robot programming (CRP) approach. Results revealed that children who adopted the MRP approach outperformed children who adopted the CRP approach on CT. In addition, behavioral analysis indicated that the proposed MRP approach could facilitate children's superior learning performance and more positive learning behaviors, so as to help them achieve learning objectives. Accordingly, this study can provide insightful guidance and inspiration for future research on effective programming teaching and CT development for young children.
期刊介绍:
Computers & Education seeks to advance understanding of how digital technology can improve education by publishing high-quality research that expands both theory and practice. The journal welcomes research papers exploring the pedagogical applications of digital technology, with a focus broad enough to appeal to the wider education community.