Chengzhi Xia, Zhenming Shi, Huanjia Kou, Shaoqiang Meng, Maomao Liu
{"title":"基于水-岩相互作用的随机洞穴群对岩溶隧道稳定性的敏感性分析(采用新型接触动力学方法","authors":"Chengzhi Xia, Zhenming Shi, Huanjia Kou, Shaoqiang Meng, Maomao Liu","doi":"10.1016/j.undsp.2023.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concentrates on the sensitivity and dynamic simulation of randomly distributed karst cave groups on tunnel stability and connectivity extended ratio based on water–rock interaction using a novel contact dynamic method (CDM). The concept of karst cave group connectivity extended ratio during tunneling and water inrush is proposed. The effects of cave shape and spatial distribution on Qiyueshan tunnel are investigated. Tunnel deformation and damage index, and connectivity extended ratio with uniform random karst cave groups are evaluated. The results demonstrate that the connectivity extended ratio is verified as a crucial judgment in predicting the safe distance and assessing the stability of the tunnel with the karst cave group. CDM model captures the fracture propagation and contact behavior of rock mass, surface flow, as well as the bidirectional water–rock interaction during the water inrush of Qiyueshan tunnel with multiple caves. A larger cave radius and smaller minimum distance between the cave and tunnel increase the deformation and damage index of the surrounding rock. When the cave radius and cave area ratio increase, the failure pattern shifts from overall to local failure. These findings potentially have broad applications in various surface and subsurface scenarios involving water–rock interactions.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 162-186"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000242/pdfft?md5=ca5c00f2669a7f07217e3c5fdd5099ba&pid=1-s2.0-S2467967424000242-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analyses of random cave groups on karst tunnel stability based on water–rock interaction using a novel contact dynamic method\",\"authors\":\"Chengzhi Xia, Zhenming Shi, Huanjia Kou, Shaoqiang Meng, Maomao Liu\",\"doi\":\"10.1016/j.undsp.2023.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concentrates on the sensitivity and dynamic simulation of randomly distributed karst cave groups on tunnel stability and connectivity extended ratio based on water–rock interaction using a novel contact dynamic method (CDM). The concept of karst cave group connectivity extended ratio during tunneling and water inrush is proposed. The effects of cave shape and spatial distribution on Qiyueshan tunnel are investigated. Tunnel deformation and damage index, and connectivity extended ratio with uniform random karst cave groups are evaluated. The results demonstrate that the connectivity extended ratio is verified as a crucial judgment in predicting the safe distance and assessing the stability of the tunnel with the karst cave group. CDM model captures the fracture propagation and contact behavior of rock mass, surface flow, as well as the bidirectional water–rock interaction during the water inrush of Qiyueshan tunnel with multiple caves. A larger cave radius and smaller minimum distance between the cave and tunnel increase the deformation and damage index of the surrounding rock. When the cave radius and cave area ratio increase, the failure pattern shifts from overall to local failure. These findings potentially have broad applications in various surface and subsurface scenarios involving water–rock interactions.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"18 \",\"pages\":\"Pages 162-186\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000242/pdfft?md5=ca5c00f2669a7f07217e3c5fdd5099ba&pid=1-s2.0-S2467967424000242-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000242\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000242","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Sensitivity analyses of random cave groups on karst tunnel stability based on water–rock interaction using a novel contact dynamic method
This paper concentrates on the sensitivity and dynamic simulation of randomly distributed karst cave groups on tunnel stability and connectivity extended ratio based on water–rock interaction using a novel contact dynamic method (CDM). The concept of karst cave group connectivity extended ratio during tunneling and water inrush is proposed. The effects of cave shape and spatial distribution on Qiyueshan tunnel are investigated. Tunnel deformation and damage index, and connectivity extended ratio with uniform random karst cave groups are evaluated. The results demonstrate that the connectivity extended ratio is verified as a crucial judgment in predicting the safe distance and assessing the stability of the tunnel with the karst cave group. CDM model captures the fracture propagation and contact behavior of rock mass, surface flow, as well as the bidirectional water–rock interaction during the water inrush of Qiyueshan tunnel with multiple caves. A larger cave radius and smaller minimum distance between the cave and tunnel increase the deformation and damage index of the surrounding rock. When the cave radius and cave area ratio increase, the failure pattern shifts from overall to local failure. These findings potentially have broad applications in various surface and subsurface scenarios involving water–rock interactions.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.