利用同步压缩变换和深度学习进行基于光敏血压计的血压估算

Yeşim HEKİM TANÇ, Mahmut Öztürk
{"title":"利用同步压缩变换和深度学习进行基于光敏血压计的血压估算","authors":"Yeşim HEKİM TANÇ, Mahmut Öztürk","doi":"10.17780/ksujes.1376860","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases are one of the deadliest health problems. Hypertension is the most common reason for cardiovascular diseases. Keeping the blood pressure (BP) level under control is the only way to protect against the deadly results of hypertension. Therefore, monitoring BP regularly makes it possible to detect dangerous conditions in patients with hypertension. With the rapid developments in computers and sensor technologies, it is becoming possible to monitor BP levels continuously by using photoplethysmogram (PPG) signals. This work presents a non-invasive BP prediction method using one channel PPG signal. We employed the Synchrosqueezing Transform to obtain Time-Frequency (TF) images of the PPG signals. The TF images were used to feed a pre-trained deep neural network. We estimated the BP levels inside the 5-second intervals. Our method estimates BP levels with a mean error (ME) of 0.2148 mmHg and -0.0370 mmHg in the systolic and diastolic blood pressure (SBP and DBP) respectively. The ME values of our method are in the applicable levels. The standard deviation (SD) of our method is 5.0642 mmHg for DBP and 10.9904 mmHg for SBP. The upper limit specified by the AAMI is 8 mmHg. Also, our method is coherent with grades A and B according to the BHS standard.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SENKRON SIKIŞTIRMA DÖNÜŞÜMÜ VE DERİN ÖĞRENME KULLANILARAK FOTOPLETİSMOGRAFİ TABANLI KAN BASINCI KESTİRİMİ\",\"authors\":\"Yeşim HEKİM TANÇ, Mahmut Öztürk\",\"doi\":\"10.17780/ksujes.1376860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases are one of the deadliest health problems. Hypertension is the most common reason for cardiovascular diseases. Keeping the blood pressure (BP) level under control is the only way to protect against the deadly results of hypertension. Therefore, monitoring BP regularly makes it possible to detect dangerous conditions in patients with hypertension. With the rapid developments in computers and sensor technologies, it is becoming possible to monitor BP levels continuously by using photoplethysmogram (PPG) signals. This work presents a non-invasive BP prediction method using one channel PPG signal. We employed the Synchrosqueezing Transform to obtain Time-Frequency (TF) images of the PPG signals. The TF images were used to feed a pre-trained deep neural network. We estimated the BP levels inside the 5-second intervals. Our method estimates BP levels with a mean error (ME) of 0.2148 mmHg and -0.0370 mmHg in the systolic and diastolic blood pressure (SBP and DBP) respectively. The ME values of our method are in the applicable levels. The standard deviation (SD) of our method is 5.0642 mmHg for DBP and 10.9904 mmHg for SBP. The upper limit specified by the AAMI is 8 mmHg. Also, our method is coherent with grades A and B according to the BHS standard.\",\"PeriodicalId\":508025,\"journal\":{\"name\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17780/ksujes.1376860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1376860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是最致命的健康问题之一。高血压是心血管疾病最常见的原因。控制血压水平是防止高血压致命后果的唯一方法。因此,定期监测血压可以发现高血压患者的危险状况。随着计算机和传感器技术的飞速发展,利用光脉搏图(PPG)信号连续监测血压水平已成为可能。本研究利用单通道 PPG 信号提出了一种无创血压预测方法。我们采用同步阙值变换来获取 PPG 信号的时频 (TF) 图像。TF 图像用于向预先训练好的深度神经网络提供信息。我们估算了 5 秒间隔内的血压水平。我们的方法估计血压水平时,收缩压和舒张压(SBP 和 DBP)的平均误差(ME)分别为 0.2148 mmHg 和 -0.0370 mmHg。我们方法的 ME 值处于适用水平。我们方法的标准偏差(SD)为:DBP 5.0642 mmHg,SBP 10.9904 mmHg。AAMI 规定的上限为 8 mmHg。此外,我们的方法符合 BHS 标准中的 A 级和 B 级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SENKRON SIKIŞTIRMA DÖNÜŞÜMÜ VE DERİN ÖĞRENME KULLANILARAK FOTOPLETİSMOGRAFİ TABANLI KAN BASINCI KESTİRİMİ
Cardiovascular diseases are one of the deadliest health problems. Hypertension is the most common reason for cardiovascular diseases. Keeping the blood pressure (BP) level under control is the only way to protect against the deadly results of hypertension. Therefore, monitoring BP regularly makes it possible to detect dangerous conditions in patients with hypertension. With the rapid developments in computers and sensor technologies, it is becoming possible to monitor BP levels continuously by using photoplethysmogram (PPG) signals. This work presents a non-invasive BP prediction method using one channel PPG signal. We employed the Synchrosqueezing Transform to obtain Time-Frequency (TF) images of the PPG signals. The TF images were used to feed a pre-trained deep neural network. We estimated the BP levels inside the 5-second intervals. Our method estimates BP levels with a mean error (ME) of 0.2148 mmHg and -0.0370 mmHg in the systolic and diastolic blood pressure (SBP and DBP) respectively. The ME values of our method are in the applicable levels. The standard deviation (SD) of our method is 5.0642 mmHg for DBP and 10.9904 mmHg for SBP. The upper limit specified by the AAMI is 8 mmHg. Also, our method is coherent with grades A and B according to the BHS standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信