Ziying Li, Feng Guo, Zhaogang Jing, Bing Li, Li Zhang, Xiaobo Wang
{"title":"交流电场中的润滑脂润滑和电腐蚀特性研究","authors":"Ziying Li, Feng Guo, Zhaogang Jing, Bing Li, Li Zhang, Xiaobo Wang","doi":"10.3390/lubricants12030079","DOIUrl":null,"url":null,"abstract":"Protecting motor bearings from electric erosion is crucial as electric vehicles evolve. To better understand how lubrication interacts with electric discharge within motor bearings during varying speeds of vehicle operation, an optical ball-on-disk tribometer was modified to investigate the influence of alternating current (AC) electric fields on film thickness, friction force under various lubrication regions, and discharge characteristics. The study revealed that in AC electric fields, as the lubrication state shifts from mixed lubrication to fluid lubrication region, the electrical characteristic of the lubricating oil film changes from resistive to capacitive, accompanied by an increase in discharge frequency. Under the elastohydrodynamic lubrication (EHL) region, an electrical potential difference between the surfaces separated by the lubrication film leads to a reduction in film thickness, which can be attributed to the generation of Joule heating. If the potential difference across the oil film increases to the threshold voltage, destructive discharge occurs with the emission of a significant amount of purple light. Joule heating generated by the AC electric fields also results in a reduction in the friction coefficient under the fluid lubrication region. However, due to the reduction in film thickness, the lubrication state eventually moves to mixed lubrication, leading to a substantial increase in the friction coefficient. In addition, the study also investigated the use of grease with a nanographite conductive additive. It was found that inappropriate additive amounts can lead to discharge phenomena occurring outside the contact region.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields\",\"authors\":\"Ziying Li, Feng Guo, Zhaogang Jing, Bing Li, Li Zhang, Xiaobo Wang\",\"doi\":\"10.3390/lubricants12030079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting motor bearings from electric erosion is crucial as electric vehicles evolve. To better understand how lubrication interacts with electric discharge within motor bearings during varying speeds of vehicle operation, an optical ball-on-disk tribometer was modified to investigate the influence of alternating current (AC) electric fields on film thickness, friction force under various lubrication regions, and discharge characteristics. The study revealed that in AC electric fields, as the lubrication state shifts from mixed lubrication to fluid lubrication region, the electrical characteristic of the lubricating oil film changes from resistive to capacitive, accompanied by an increase in discharge frequency. Under the elastohydrodynamic lubrication (EHL) region, an electrical potential difference between the surfaces separated by the lubrication film leads to a reduction in film thickness, which can be attributed to the generation of Joule heating. If the potential difference across the oil film increases to the threshold voltage, destructive discharge occurs with the emission of a significant amount of purple light. Joule heating generated by the AC electric fields also results in a reduction in the friction coefficient under the fluid lubrication region. However, due to the reduction in film thickness, the lubrication state eventually moves to mixed lubrication, leading to a substantial increase in the friction coefficient. In addition, the study also investigated the use of grease with a nanographite conductive additive. It was found that inappropriate additive amounts can lead to discharge phenomena occurring outside the contact region.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields
Protecting motor bearings from electric erosion is crucial as electric vehicles evolve. To better understand how lubrication interacts with electric discharge within motor bearings during varying speeds of vehicle operation, an optical ball-on-disk tribometer was modified to investigate the influence of alternating current (AC) electric fields on film thickness, friction force under various lubrication regions, and discharge characteristics. The study revealed that in AC electric fields, as the lubrication state shifts from mixed lubrication to fluid lubrication region, the electrical characteristic of the lubricating oil film changes from resistive to capacitive, accompanied by an increase in discharge frequency. Under the elastohydrodynamic lubrication (EHL) region, an electrical potential difference between the surfaces separated by the lubrication film leads to a reduction in film thickness, which can be attributed to the generation of Joule heating. If the potential difference across the oil film increases to the threshold voltage, destructive discharge occurs with the emission of a significant amount of purple light. Joule heating generated by the AC electric fields also results in a reduction in the friction coefficient under the fluid lubrication region. However, due to the reduction in film thickness, the lubrication state eventually moves to mixed lubrication, leading to a substantial increase in the friction coefficient. In addition, the study also investigated the use of grease with a nanographite conductive additive. It was found that inappropriate additive amounts can lead to discharge phenomena occurring outside the contact region.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding