Samia Teghri, H. Goual, Hamami Loubna, Nadeem Shafique Butt, Abdelrahman M. Khedr, H. Yousof, M. Ibrahim, Moustafa Salem
{"title":"新的双参数 Lindley-Frailty 模型:不同基线模型下的有删减和无删减方案:应用、评估、有删失和无删失验证测试","authors":"Samia Teghri, H. Goual, Hamami Loubna, Nadeem Shafique Butt, Abdelrahman M. Khedr, H. Yousof, M. Ibrahim, Moustafa Salem","doi":"10.18187/pjsor.v20i1.4225","DOIUrl":null,"url":null,"abstract":"Classical survival models assume homogeneity among the population of individuals who are susceptible to the event of interest. However, in many practical circumstances, there is a certain amount of unobserved heterogeneity that can be caused by a variety of sources, such as environmental or genetic factors. If the heterogeneity is ignored, many issues could arise, including an overestimation of the hazard rate and inaccurate estimates of the regression coefficients. Frailty models are usually used to model the heterogeneity among individuals. In this paper, we propose a novel univariate frailty model. The frailty variable is assumed to follow the Two Parameter Lindley distribution. The maximum likelihood method is used to estimate the model parameters. The baseline hazard functions are assumed to follow Weibull, Exponential, Gompertz, and Pareto distributions, and a simulation study is performed under this assumption. We examine the characteristics of the distribution and assess its performance compared to other distributions that are frequently applied in frailty modeling by using both Nikulin-Rao-Robson and Bagdonavicius-Nikulin goodness-of-fit tests to determine the adequacy of the model. We analyze a fresh medical dataset collected from an emergency hospital in Algeria to evaluate the effectiveness and applicability of the proposed model. ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Two-Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, Censored and Uncensored Validation Testing\",\"authors\":\"Samia Teghri, H. Goual, Hamami Loubna, Nadeem Shafique Butt, Abdelrahman M. Khedr, H. Yousof, M. Ibrahim, Moustafa Salem\",\"doi\":\"10.18187/pjsor.v20i1.4225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical survival models assume homogeneity among the population of individuals who are susceptible to the event of interest. However, in many practical circumstances, there is a certain amount of unobserved heterogeneity that can be caused by a variety of sources, such as environmental or genetic factors. If the heterogeneity is ignored, many issues could arise, including an overestimation of the hazard rate and inaccurate estimates of the regression coefficients. Frailty models are usually used to model the heterogeneity among individuals. In this paper, we propose a novel univariate frailty model. The frailty variable is assumed to follow the Two Parameter Lindley distribution. The maximum likelihood method is used to estimate the model parameters. The baseline hazard functions are assumed to follow Weibull, Exponential, Gompertz, and Pareto distributions, and a simulation study is performed under this assumption. We examine the characteristics of the distribution and assess its performance compared to other distributions that are frequently applied in frailty modeling by using both Nikulin-Rao-Robson and Bagdonavicius-Nikulin goodness-of-fit tests to determine the adequacy of the model. We analyze a fresh medical dataset collected from an emergency hospital in Algeria to evaluate the effectiveness and applicability of the proposed model. \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v20i1.4225\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v20i1.4225","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Two-Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, Censored and Uncensored Validation Testing
Classical survival models assume homogeneity among the population of individuals who are susceptible to the event of interest. However, in many practical circumstances, there is a certain amount of unobserved heterogeneity that can be caused by a variety of sources, such as environmental or genetic factors. If the heterogeneity is ignored, many issues could arise, including an overestimation of the hazard rate and inaccurate estimates of the regression coefficients. Frailty models are usually used to model the heterogeneity among individuals. In this paper, we propose a novel univariate frailty model. The frailty variable is assumed to follow the Two Parameter Lindley distribution. The maximum likelihood method is used to estimate the model parameters. The baseline hazard functions are assumed to follow Weibull, Exponential, Gompertz, and Pareto distributions, and a simulation study is performed under this assumption. We examine the characteristics of the distribution and assess its performance compared to other distributions that are frequently applied in frailty modeling by using both Nikulin-Rao-Robson and Bagdonavicius-Nikulin goodness-of-fit tests to determine the adequacy of the model. We analyze a fresh medical dataset collected from an emergency hospital in Algeria to evaluate the effectiveness and applicability of the proposed model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.