Kadir Karakaya, Ismail Kinaci, Yunus Akdoğan, Buğra Saraçoğlu, Coşkun Kuş
{"title":"渐进删减下反瑞利分布过程能力指数 Cpyk 的统计推断","authors":"Kadir Karakaya, Ismail Kinaci, Yunus Akdoğan, Buğra Saraçoğlu, Coşkun Kuş","doi":"10.18187/pjsor.v20i1.4296","DOIUrl":null,"url":null,"abstract":"In quality engineering, process capability indexes are used to determine the capability of a process. The well-known of the process capability indexes are Cp, Cpk, Cpm, and Cpmk. These indexes assume the normality of the product lifetime. \\citet{maiti2010generalizing} suggested a Cpyk as a generalized process capability index without distributional assumption. In this paper, the maximum likelihood and Bayesian inference on the Cpyk are studied under progressive censoring when the underlying distribution is inverse Rayleigh distribution. Furthermore, Bayesian credible and highest posterior density intervals are discussed with the MCMC procedure. Several types of bootsrap confidence intervals are also considered. A Monte Carlo simulation is conducted in terms of the coverage probabilities and mean lengths of the proposed intervals. An illustrative example is presented to close the paper. \n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Inference on Process Capability Index Cpyk for Inverse Rayleigh Distribution under Progressive Censoring\",\"authors\":\"Kadir Karakaya, Ismail Kinaci, Yunus Akdoğan, Buğra Saraçoğlu, Coşkun Kuş\",\"doi\":\"10.18187/pjsor.v20i1.4296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In quality engineering, process capability indexes are used to determine the capability of a process. The well-known of the process capability indexes are Cp, Cpk, Cpm, and Cpmk. These indexes assume the normality of the product lifetime. \\\\citet{maiti2010generalizing} suggested a Cpyk as a generalized process capability index without distributional assumption. In this paper, the maximum likelihood and Bayesian inference on the Cpyk are studied under progressive censoring when the underlying distribution is inverse Rayleigh distribution. Furthermore, Bayesian credible and highest posterior density intervals are discussed with the MCMC procedure. Several types of bootsrap confidence intervals are also considered. A Monte Carlo simulation is conducted in terms of the coverage probabilities and mean lengths of the proposed intervals. An illustrative example is presented to close the paper. \\n \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v20i1.4296\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v20i1.4296","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Statistical Inference on Process Capability Index Cpyk for Inverse Rayleigh Distribution under Progressive Censoring
In quality engineering, process capability indexes are used to determine the capability of a process. The well-known of the process capability indexes are Cp, Cpk, Cpm, and Cpmk. These indexes assume the normality of the product lifetime. \citet{maiti2010generalizing} suggested a Cpyk as a generalized process capability index without distributional assumption. In this paper, the maximum likelihood and Bayesian inference on the Cpyk are studied under progressive censoring when the underlying distribution is inverse Rayleigh distribution. Furthermore, Bayesian credible and highest posterior density intervals are discussed with the MCMC procedure. Several types of bootsrap confidence intervals are also considered. A Monte Carlo simulation is conducted in terms of the coverage probabilities and mean lengths of the proposed intervals. An illustrative example is presented to close the paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.