用于脊髓损伤修复的植入式 3D 打印支架的最新进展

IF 3.1 Q2 PHARMACOLOGY & PHARMACY
S. Khaledian, Ghobad Mohammadi, M. Abdoli, Arad Fatahian, Arya Fatahian, Reza Fatahian
{"title":"用于脊髓损伤修复的植入式 3D 打印支架的最新进展","authors":"S. Khaledian, Ghobad Mohammadi, M. Abdoli, Arad Fatahian, Arya Fatahian, Reza Fatahian","doi":"10.34172/apb.2024.032","DOIUrl":null,"url":null,"abstract":"Spinal cord injury (SCI) is an important factor in sensory and motor disorders that affects thousands of people every year. Currently, despite successes in basic science and clinical research, there are few effective methods in the treatment of chronic and acute spinal cord injuries. In the last decade, the use of 3D printed scaffolds in the treatment of SCI had satisfactory and promising results. By providing a microenvironment around the injury site and in combination with growth factors or cells, 3D printed scaffolds help in axon regeneration as well as neural recovery after SCI. Here, we provide an overview of tissue engineering, 3D printing scaffolds, the different polymers used and their characterization methods. This review highlights the recent encouraging applications of 3D printing scaffolds in developing the novel SCI therapy.","PeriodicalId":7256,"journal":{"name":"Advanced pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in implantable 3D-printed scaffolds for repair of spinal cord injury\",\"authors\":\"S. Khaledian, Ghobad Mohammadi, M. Abdoli, Arad Fatahian, Arya Fatahian, Reza Fatahian\",\"doi\":\"10.34172/apb.2024.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinal cord injury (SCI) is an important factor in sensory and motor disorders that affects thousands of people every year. Currently, despite successes in basic science and clinical research, there are few effective methods in the treatment of chronic and acute spinal cord injuries. In the last decade, the use of 3D printed scaffolds in the treatment of SCI had satisfactory and promising results. By providing a microenvironment around the injury site and in combination with growth factors or cells, 3D printed scaffolds help in axon regeneration as well as neural recovery after SCI. Here, we provide an overview of tissue engineering, 3D printing scaffolds, the different polymers used and their characterization methods. This review highlights the recent encouraging applications of 3D printing scaffolds in developing the novel SCI therapy.\",\"PeriodicalId\":7256,\"journal\":{\"name\":\"Advanced pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced pharmaceutical bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/apb.2024.032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced pharmaceutical bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/apb.2024.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是导致感觉和运动障碍的一个重要因素,每年影响成千上万的人。目前,尽管基础科学和临床研究取得了成功,但治疗慢性和急性脊髓损伤的有效方法仍然很少。在过去十年中,使用三维打印支架治疗脊髓损伤取得了令人满意和充满希望的结果。通过在损伤部位周围提供微环境并与生长因子或细胞相结合,三维打印支架有助于轴突再生以及脊髓损伤后的神经恢复。在此,我们将概述组织工程、3D 打印支架、所使用的不同聚合物及其表征方法。这篇综述重点介绍了三维打印支架最近在开发新型 SCI 治疗中令人鼓舞的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in implantable 3D-printed scaffolds for repair of spinal cord injury
Spinal cord injury (SCI) is an important factor in sensory and motor disorders that affects thousands of people every year. Currently, despite successes in basic science and clinical research, there are few effective methods in the treatment of chronic and acute spinal cord injuries. In the last decade, the use of 3D printed scaffolds in the treatment of SCI had satisfactory and promising results. By providing a microenvironment around the injury site and in combination with growth factors or cells, 3D printed scaffolds help in axon regeneration as well as neural recovery after SCI. Here, we provide an overview of tissue engineering, 3D printing scaffolds, the different polymers used and their characterization methods. This review highlights the recent encouraging applications of 3D printing scaffolds in developing the novel SCI therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced pharmaceutical bulletin
Advanced pharmaceutical bulletin PHARMACOLOGY & PHARMACY-
CiteScore
6.80
自引率
2.80%
发文量
51
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信