Naidan Tu, Lavanya S. Kumar, Sean Joo, Stephen Stark
{"title":"使用多维成对偏好模型的多维强制选择测试的链接方法","authors":"Naidan Tu, Lavanya S. Kumar, Sean Joo, Stephen Stark","doi":"10.1177/01466216241238741","DOIUrl":null,"url":null,"abstract":"Applications of multidimensional forced choice (MFC) testing have increased considerably over the last 20 years. Yet there has been little, if any, research on methods for linking the parameter estimates from different samples. This research addressed that important need by extending four widely used methods for unidimensional linking and comparing the efficacy of new estimation algorithms for MFC linking coefficients based on the Multi-Unidimensional Pairwise Preference model (MUPP). More specifically, we compared the efficacy of multidimensional test characteristic curve (TCC), item characteristic curve (ICC; Haebara, 1980), mean/mean (M/M), and mean/sigma (M/S) methods in a Monte Carlo study that also manipulated test length, test dimensionality, sample size, percentage of anchor items, and linking scenarios. Results indicated that the ICC method outperformed the M/M method, which was better than the M/S method, with the TCC method being the least effective. However, as the number of items “per dimension” and the percentage of anchor items increased, the differences between the ICC, M/M, and M/S methods decreased. Study implications and practical recommendations for MUPP linking, as well as limitations, are discussed.","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking Methods for Multidimensional Forced Choice Tests Using the Multi-Unidimensional Pairwise Preference Model\",\"authors\":\"Naidan Tu, Lavanya S. Kumar, Sean Joo, Stephen Stark\",\"doi\":\"10.1177/01466216241238741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications of multidimensional forced choice (MFC) testing have increased considerably over the last 20 years. Yet there has been little, if any, research on methods for linking the parameter estimates from different samples. This research addressed that important need by extending four widely used methods for unidimensional linking and comparing the efficacy of new estimation algorithms for MFC linking coefficients based on the Multi-Unidimensional Pairwise Preference model (MUPP). More specifically, we compared the efficacy of multidimensional test characteristic curve (TCC), item characteristic curve (ICC; Haebara, 1980), mean/mean (M/M), and mean/sigma (M/S) methods in a Monte Carlo study that also manipulated test length, test dimensionality, sample size, percentage of anchor items, and linking scenarios. Results indicated that the ICC method outperformed the M/M method, which was better than the M/S method, with the TCC method being the least effective. However, as the number of items “per dimension” and the percentage of anchor items increased, the differences between the ICC, M/M, and M/S methods decreased. Study implications and practical recommendations for MUPP linking, as well as limitations, are discussed.\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216241238741\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241238741","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
Linking Methods for Multidimensional Forced Choice Tests Using the Multi-Unidimensional Pairwise Preference Model
Applications of multidimensional forced choice (MFC) testing have increased considerably over the last 20 years. Yet there has been little, if any, research on methods for linking the parameter estimates from different samples. This research addressed that important need by extending four widely used methods for unidimensional linking and comparing the efficacy of new estimation algorithms for MFC linking coefficients based on the Multi-Unidimensional Pairwise Preference model (MUPP). More specifically, we compared the efficacy of multidimensional test characteristic curve (TCC), item characteristic curve (ICC; Haebara, 1980), mean/mean (M/M), and mean/sigma (M/S) methods in a Monte Carlo study that also manipulated test length, test dimensionality, sample size, percentage of anchor items, and linking scenarios. Results indicated that the ICC method outperformed the M/M method, which was better than the M/S method, with the TCC method being the least effective. However, as the number of items “per dimension” and the percentage of anchor items increased, the differences between the ICC, M/M, and M/S methods decreased. Study implications and practical recommendations for MUPP linking, as well as limitations, are discussed.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.