绿色发光碳量子点:纳米复合材料和润滑系统中的高灵敏度温度传感探针

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Jiannan Sun, Ke Yan, Pan Zhang, A. Pan, Xuehang Chen, Xinyi Shi
{"title":"绿色发光碳量子点:纳米复合材料和润滑系统中的高灵敏度温度传感探针","authors":"Jiannan Sun, Ke Yan, Pan Zhang, A. Pan, Xuehang Chen, Xinyi Shi","doi":"10.3390/lubricants12030088","DOIUrl":null,"url":null,"abstract":"Carbon quantum dots (CQDs) have already demonstrated their utility as lubricant additives, and non-contact temperature sensing based on CQDs offers considerable potential for condition monitoring in mechanical, electrical, and other fields, as well as lubrication-temperature multifunctional applications in lubricants. In this paper, we have successfully synthesized and designed high-brightness carbon quantum dots/polyvinyl alcohol (PVA) temperature sensor thin film and dispersions of CQDs in a liquid paraffin lubrication system. Based on fluorescence intensity and the fluorescence intensity ratio, the carbon quantum dot/PVA film exhibited exponential temperature-dependent properties with a wide applicability range, a high goodness of fit (R2 > 0.99), and high relative thermal sensitivity (relative sensitivities of 1.74% K−1 and 1.39% K−1 for fluorescence intensity and fluorescence intensity ratio, respectively). In addition, based on the fluorescence intensity, the CQDs exhibited a wide temperature range (20–90 °C), a high goodness of fit (R2 > 0.99), and higher sensitivity (2.84% K−1) in a liquid paraffin lubrication system, which reflects the temperature responsive properties of carbon quantum dots as additives in lubrication systems. These findings provide convenient and effective possibilities for the sensing and monitoring of carbon quantum dots and their multifunctional applications under lubrication systems.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green-Emitting Carbon Quantum Dots: Highly Sensitive Temperature Sensing Probe in Nanocomposite and Lubrication System\",\"authors\":\"Jiannan Sun, Ke Yan, Pan Zhang, A. Pan, Xuehang Chen, Xinyi Shi\",\"doi\":\"10.3390/lubricants12030088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon quantum dots (CQDs) have already demonstrated their utility as lubricant additives, and non-contact temperature sensing based on CQDs offers considerable potential for condition monitoring in mechanical, electrical, and other fields, as well as lubrication-temperature multifunctional applications in lubricants. In this paper, we have successfully synthesized and designed high-brightness carbon quantum dots/polyvinyl alcohol (PVA) temperature sensor thin film and dispersions of CQDs in a liquid paraffin lubrication system. Based on fluorescence intensity and the fluorescence intensity ratio, the carbon quantum dot/PVA film exhibited exponential temperature-dependent properties with a wide applicability range, a high goodness of fit (R2 > 0.99), and high relative thermal sensitivity (relative sensitivities of 1.74% K−1 and 1.39% K−1 for fluorescence intensity and fluorescence intensity ratio, respectively). In addition, based on the fluorescence intensity, the CQDs exhibited a wide temperature range (20–90 °C), a high goodness of fit (R2 > 0.99), and higher sensitivity (2.84% K−1) in a liquid paraffin lubrication system, which reflects the temperature responsive properties of carbon quantum dots as additives in lubrication systems. These findings provide convenient and effective possibilities for the sensing and monitoring of carbon quantum dots and their multifunctional applications under lubrication systems.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030088\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030088","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳量子点(CQDs)已经证明了其作为润滑油添加剂的实用性,基于 CQDs 的非接触温度传感在机械、电气和其他领域的状态监测以及润滑油中的润滑-温度多功能应用方面具有相当大的潜力。本文成功合成并设计了高亮度碳量子点/聚乙烯醇(PVA)温度传感器薄膜以及 CQDs 在液体石蜡润滑系统中的分散体。根据荧光强度和荧光强度比,碳量子点/聚乙烯醇薄膜表现出指数温度依赖性,适用范围广,拟合度高(R2 > 0.99),相对热灵敏度高(荧光强度和荧光强度比的相对灵敏度分别为 1.74% K-1 和 1.39% K-1)。此外,基于荧光强度,碳量子点在液体石蜡润滑系统中表现出较宽的温度范围(20-90 °C)、较高的拟合优度(R2 > 0.99)和较高的灵敏度(2.84% K-1),这反映了碳量子点作为润滑系统添加剂的温度响应特性。这些发现为碳量子点在润滑系统中的传感和监测及其多功能应用提供了方便和有效的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green-Emitting Carbon Quantum Dots: Highly Sensitive Temperature Sensing Probe in Nanocomposite and Lubrication System
Carbon quantum dots (CQDs) have already demonstrated their utility as lubricant additives, and non-contact temperature sensing based on CQDs offers considerable potential for condition monitoring in mechanical, electrical, and other fields, as well as lubrication-temperature multifunctional applications in lubricants. In this paper, we have successfully synthesized and designed high-brightness carbon quantum dots/polyvinyl alcohol (PVA) temperature sensor thin film and dispersions of CQDs in a liquid paraffin lubrication system. Based on fluorescence intensity and the fluorescence intensity ratio, the carbon quantum dot/PVA film exhibited exponential temperature-dependent properties with a wide applicability range, a high goodness of fit (R2 > 0.99), and high relative thermal sensitivity (relative sensitivities of 1.74% K−1 and 1.39% K−1 for fluorescence intensity and fluorescence intensity ratio, respectively). In addition, based on the fluorescence intensity, the CQDs exhibited a wide temperature range (20–90 °C), a high goodness of fit (R2 > 0.99), and higher sensitivity (2.84% K−1) in a liquid paraffin lubrication system, which reflects the temperature responsive properties of carbon quantum dots as additives in lubrication systems. These findings provide convenient and effective possibilities for the sensing and monitoring of carbon quantum dots and their multifunctional applications under lubrication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信